Summary
AlphaGo is a computer program that plays the board game Go. It was developed by the London-based DeepMind Technologies, an acquired subsidiary of Google (now Alphabet Inc.). Subsequent versions of AlphaGo became increasingly powerful, including a version that competed under the name Master. After retiring from competitive play, AlphaGo Master was succeeded by an even more powerful version known as AlphaGo Zero, which was completely self-taught without learning from human games. AlphaGo Zero was then generalized into a program known as AlphaZero, which played additional games, including chess and shogi. AlphaZero has in turn been succeeded by a program known as MuZero which learns without being taught the rules. AlphaGo and its successors use a Monte Carlo tree search algorithm to find its moves based on knowledge previously acquired by machine learning, specifically by an artificial neural network (a deep learning method) by extensive training, both from human and computer play. A neural network is trained to identify the best moves and the winning percentages of these moves. This neural network improves the strength of the tree search, resulting in stronger move selection in the next iteration. In October 2015, in a match against Fan Hui, the original AlphaGo became the first computer Go program to beat a human professional Go player without handicap on a full-sized 19×19 board. In March 2016, it beat Lee Sedol in a five-game match, the first time a computer Go program has beaten a 9-dan professional without handicap. Although it lost to Lee Sedol in the fourth game, Lee resigned in the final game, giving a final score of 4 games to 1 in favour of AlphaGo. In recognition of the victory, AlphaGo was awarded an honorary 9-dan by the Korea Baduk Association. The lead up and the challenge match with Lee Sedol were documented in a documentary film also titled AlphaGo, directed by Greg Kohs. The win by AlphaGo was chosen by Science as one of the Breakthrough of the Year runners-up on 22 December 2016.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.