In multivariable calculus, an initial value problem (IVP) is an ordinary differential equation together with an initial condition which specifies the value of the unknown function at a given point in the domain. Modeling a system in physics or other sciences frequently amounts to solving an initial value problem. In that context, the differential initial value is an equation which specifies how the system evolves with time given the initial conditions of the problem.
An initial value problem is a differential equation
with where is an open set of ,
together with a point in the domain of
called the initial condition.
A solution to an initial value problem is a function that is a solution to the differential equation and satisfies
In higher dimensions, the differential equation is replaced with a family of equations , and is viewed as the vector , most commonly associated with the position in space. More generally, the unknown function can take values on infinite dimensional spaces, such as Banach spaces or spaces of distributions.
Initial value problems are extended to higher orders by treating the derivatives in the same way as an independent function, e.g. .
The Picard–Lindelöf theorem guarantees a unique solution on some interval containing t0 if f is continuous on a region containing t0 and y0 and satisfies the Lipschitz condition on the variable y.
The proof of this theorem proceeds by reformulating the problem as an equivalent integral equation. The integral can be considered an operator which maps one function into another, such that the solution is a fixed point of the operator. The Banach fixed point theorem is then invoked to show that there exists a unique fixed point, which is the solution of the initial value problem.
An older proof of the Picard–Lindelöf theorem constructs a sequence of functions which converge to the solution of the integral equation, and thus, the solution of the initial value problem. Such a construction is sometimes called "Picard's method" or "the method of successive approximations".
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is an introduction to nonlinear Schrödinger equations (NLS) and, more generally, to nonlinear dispersive equations. We will discuss local and global well-posedness, conservation laws, the
This lecture is oriented towards the study of audio engineering, with a special focus on room acoustics applications. The learning outcomes will be the techniques for microphones and loudspeaker desig
In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology.
In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable. As with other DE, its unknown(s) consists of one (or more) function(s) and involves the derivatives of those functions. The term "ordinary" is used in contrast with partial differential equations which may be with respect to one independent variable. A linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form where a_0(x), .
In the study of differential equations, a boundary-value problem is a differential equation subjected to constraints called boundary conditions. A solution to a boundary value problem is a solution to the differential equation which also satisfies the boundary conditions. Boundary value problems arise in several branches of physics as any physical differential equation will have them. Problems involving the wave equation, such as the determination of normal modes, are often stated as boundary value problems.
We prove global in time well-posedness for perturbations of the 2D stochastic Navier-Stokes equations partial derivative( t)u + u center dot del u = Delta u - del p + sigma + xi, u(0, center dot ) = u(0),div (u) = 0, driven by additive space-time white noi ...
London2024
,
The development of small-angle scattering tensor tomography has enabled the study of anisotropic nanostructures in a volume-resolved manner. It is of great value to have reconstruction methods that can handle many different nanostructural symmetries. For s ...
Surface roughness is a key factor when it comes to friction and wear, as well as to other physical properties. These phenomena are controlled by mechanisms acting at small scales, in which the topography of apparently flat surfaces is revealed. Roughness i ...