Tullio Levi-Civita, (ˈtʊlioʊ_ˈlɛvi_ˈtʃɪvᵻtə, ˈtulljo ˈlɛːvi ˈtʃiːvita; 29 March 1873 – 29 December 1941) was an Italian mathematician, most famous for his work on absolute differential calculus (tensor calculus) and its applications to the theory of relativity, but who also made significant contributions in other areas. He was a pupil of Gregorio Ricci-Curbastro, the inventor of tensor calculus. His work included foundational papers in both pure and applied mathematics, celestial mechanics (notably on the three-body problem), analytic mechanics (the Levi-Civita separability conditions in the Hamilton–Jacobi equation) and hydrodynamics.
Born into an Italian Jewish family in Padua, Levi-Civita was the son of Giacomo Levi-Civita, a lawyer and former senator. He graduated in 1892 from the University of Padua Faculty of Mathematics. In 1894 he earned a teaching diploma after which he was appointed to the Faculty of Science teacher's college in Pavia. In 1898 he was appointed to the Padua Chair of Rational Mechanics (left uncovered by death of Ernesto Padova) where he met and, in 1914, married Libera Trevisani, one of his pupils. He remained in his position at Padua until 1918, when he was appointed to the Chair of Higher Analysis at the University of Rome; in another two years he was appointed to the Chair of Mechanics there.
In 1900 he and Ricci-Curbastro published the theory of tensors in Méthodes de calcul différentiel absolu et leurs applications, which Albert Einstein used as a resource to master the tensor calculus, a critical tool in the development of the theory of general relativity. In 1917 he introduced the notion of parallel transport in Riemannian geometry, motivated by the will to simplify the computation of the curvature of a Riemannian manifold. Levi-Civita's series of papers on the problem of a static gravitational field were also discussed in his 1915–1917 correspondence with Einstein. The correspondence was initiated by Levi-Civita, as he found mathematical errors in Einstein's use of tensor calculus to explain the theory of relativity.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, Ricci calculus constitutes the rules of index notation and manipulation for tensors and tensor fields on a differentiable manifold, with or without a metric tensor or connection. It is also the modern name for what used to be called the absolute differential calculus (the foundation of tensor calculus), developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900.
Gregorio Ricci-Curbastro (ɡreˈɡɔːrjo ˈrittʃi kurˈbastro; 12 January 1925) was an Italian mathematician. He is most famous as the discoverer of tensor calculus. With his former student Tullio Levi-Civita, he wrote his most famous single publication, a pioneering work on the calculus of tensors, signing it as Gregorio Ricci. This appears to be the only time that Ricci-Curbastro used the shortened form of his name in a publication, and continues to cause confusion.
A hallmark of Albert Einstein's career was his use of visualized thought experiments (Gedankenexperiment) as a fundamental tool for understanding physical issues and for elucidating his concepts to others. Einstein's thought experiments took diverse forms. In his youth, he mentally chased beams of light. For special relativity, he employed moving trains and flashes of lightning to explain his most penetrating insights. For general relativity, he considered a person falling off a roof, accelerating elevators, blind beetles crawling on curved surfaces and the like.
Introduces Hodge duality, covariant derivatives, and key concepts in differential geometry.
Presents the fundamental theorem of Riemannian geometry and demonstrates the uniqueness of the Riemannian connection.
Explores Maxwell equations, Minkowski spacetime, Lorentz transformations, charge conservation, and spacetime structure in physics.
In this article we study Sobolev metrics of order one on diffeomorphism groups on the real line. We prove that the space equipped with the homogeneous Sobolev metric of order one is a flat space in the sense of Riemannian geometry, as it is isometric to an ...