Ricci calculusIn mathematics, Ricci calculus constitutes the rules of index notation and manipulation for tensors and tensor fields on a differentiable manifold, with or without a metric tensor or connection. It is also the modern name for what used to be called the absolute differential calculus (the foundation of tensor calculus), developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900.
Gregorio Ricci-CurbastroGregorio Ricci-Curbastro (né le à Lugo, dans la province de Ravenne, en Émilie-Romagne et mort le à Bologne) est un mathématicien italien de la fin du et du début du . Spécialiste de la géométrie différentielle, il est l'un des pères du calcul tensoriel. Ricci-Curbastro étudia dès l'âge de seize ans la philosophie et les mathématiques à l'Université de Rome, publiant même un article sur les « Recherches de Fuchs sur les équations différentielles linéaires » ; après une période d'interruption, il les poursuivit à l’Université de Bologne (1872) et l’École normale supérieure de Pise dont il sortit diplômé (1875).
Einstein's thought experimentsA hallmark of Albert Einstein's career was his use of visualized thought experiments (Gedankenexperiment) as a fundamental tool for understanding physical issues and for elucidating his concepts to others. Einstein's thought experiments took diverse forms. In his youth, he mentally chased beams of light. For special relativity, he employed moving trains and flashes of lightning to explain his most penetrating insights. For general relativity, he considered a person falling off a roof, accelerating elevators, blind beetles crawling on curved surfaces and the like.
Marcel GrossmannMarcel Grossmann ( à Budapest, Autriche-Hongrie - à Zurich, Suisse) est un mathématicien suisse (fils d'un père suisse établi en Autriche-Hongrie). Il est surtout connu pour avoir aidé Albert Einstein à construire la théorie de la relativité générale. Après avoir obtenu son doctorat en géométrie descriptive à l'Institut polytechnique de Zurich, devenu aujourd'hui École polytechnique fédérale de Zurich, il y devient professeur de mathématiques. En 1910, il cofonde la Société mathématique suisse dont il sera président en 1916-1917.
Géométrie riemanniennevignette|275px|L'étude de la forme de l'univers est une adaptation des idées et méthodes de la géométrie riemannienne La géométrie riemannienne est une branche de la géométrie différentielle nommée en l'honneur du mathématicien Bernhard Riemann, qui introduisit les concepts fondateurs de variété géométrique et de courbure. Il s'agit de surfaces ou d'objets de plus grande dimension sur lesquels existent des notions d'angle et de longueur, généralisant la géométrie traditionnelle qui se limitait à l'espace euclidien.
Tenseur métriqueEn géométrie, et plus particulièrement en géométrie différentielle, le tenseur métrique est un tenseur d'ordre 2 permettant de définir le produit scalaire de deux vecteurs en chaque point d'un espace, et qui est utilisé pour la mesure des longueurs et des angles. Il généralise le théorème de Pythagore. Dans un système de coordonnées donné, le tenseur métrique peut se représenter comme une matrice symétrique, généralement notée , pour ne pas confondre la matrice (en majuscule) et le tenseur métrique g.
Symbole de Levi-CivitaEn mathématiques, le symbole de Levi-Civita, noté ε (lettre grecque epsilon), est un objet antisymétrique d'ordre 3 qui peut être exprimé à partir du symbole de Kronecker : Ainsi, ne peut prendre que trois valeurs : –1, 0 ou 1. En dimension 3, on peut figurer le symbole de Levi-Civita comme suit : On remarque que si , et , alors représente une permutation et le symbole de Levi-Civita correspondant est sa signature.
Connexion de Levi-CivitaEn géométrie riemannienne, la connexion de Levi-Civita est une connexion de Koszul naturellement définie sur toute variété riemannienne ou par extension sur toute variété pseudo-riemannienne. Ses propriétés caractérisent la variété riemannienne. Notamment, les géodésiques, courbes minimisant localement la distance riemannienne, sont exactement les courbes pour lesquelles le vecteur vitesse est parallèle. De plus, la courbure de la variété se définit à partir de cette connexion ; des conditions sur la courbure imposent des contraintes topologiques sur la variété.
Tenseur de Riemannvignette|Motivation de la courbure de Riemann pour les variétés sphériques. En géométrie riemannienne, le tenseur de courbure de Riemann-Christoffel est la façon la plus courante d'exprimer la courbure des variétés riemanniennes, ou plus généralement d'une variété disposant d'une connexion affine, avec ou sans torsion. Soit deux géodésiques d'un espace courbe, parallèles au voisinage d'un point P. Le parallélisme ne sera pas nécessairement conservé en d'autres points de l'espace.
Elwin Bruno ChristoffelElwin Bruno Christoffel (1829-1900) est un mathématicien et physicien allemand. Il étudie à l'université Humboldt de Berlin, notamment avec Dirichlet. Il soutient une thèse sur la propagation de l'électricité dans les corps homogènes en 1856. En 1859, Christoffel devient Privat-docent à l'université de Berlin. En 1862, il est nommé à l'École polytechnique fédérale de Zurich où il occupe la chaire laissée vacante par le départ de Dedekind.