An oligosaccharide (/ˌɑlɪgoʊˈsækəˌɹaɪd/; from the Greek ὀλίγος olígos, "a few", and σάκχαρ sácchar, "sugar") is a saccharide polymer containing a small number (typically three to ten) of monosaccharides (simple sugars). Oligosaccharides can have many functions including cell recognition and cell adhesion.
They are normally present as glycans: oligosaccharide chains are linked to lipids or to compatible amino acid side chains in proteins, by N- or O-glycosidic bonds. N-Linked oligosaccharides are always pentasaccharides attached to asparagine via a beta linkage to the amine nitrogen of the side chain. Alternately, O-linked oligosaccharides are generally attached to threonine or serine on the alcohol group of the side chain. Not all natural oligosaccharides occur as components of glycoproteins or glycolipids. Some, such as the raffinose series, occur as storage or transport carbohydrates in plants. Others, such as maltodextrins or cellodextrins, result from the microbial breakdown of larger polysaccharides such as starch or cellulose.
In biology, glycosylation is the process by which a carbohydrate is covalently attached to an organic molecule, creating structures such as glycoproteins and glycolipids.
N-Linked glycosylation involves oligosaccharide attachment to asparagine via a beta linkage to the amine nitrogen of the side chain. The process of N-linked glycosylation occurs cotranslationally, or concurrently while the proteins are being translated. Since it is added cotranslationally, it is believed that N-linked glycosylation helps determine the folding of polypeptides due to the hydrophilic nature of sugars. All N-linked oligosaccharides are pentasaccharides: five monosaccharides long.
In N-glycosylation for eukaryotes, the oligosaccharide substrate is assembled right at the membrane of the endoplasmatic reticulum. For prokaryotes, this process occurs at the plasma membrane. In both cases, the acceptor substrate is an asparagine residue.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course will deliver basic knowledge on the principles of food fermentation and enzyme technology. The course will also present benefits that food biotechnology can bring in terms of Nutrition & He
The glycome is the entire complement of sugars, whether free or present in more complex molecules, of an organism. An alternative definition is the entirety of carbohydrates in a cell. The glycome may in fact be one of the most complex entities in nature. "Glycomics, analogous to genomics and proteomics, is the systematic study of all glycan structures of a given cell type or organism" and is a subset of glycobiology.
Gut microbiota, gut microbiome, or gut flora, are the microorganisms, including bacteria, archaea, fungi, and viruses, that live in the digestive tracts of animals. The gastrointestinal metagenome is the aggregate of all the genomes of the gut microbiota. The gut is the main location of the human microbiome. The gut microbiota has broad impacts, including effects on colonization, resistance to pathogens, maintaining the intestinal epithelium, metabolizing dietary and pharmaceutical compounds, controlling immune function, and even behavior through the gut–brain axis.
Glycosylation is the reaction in which a carbohydrate (or 'glycan'), i.e. a glycosyl donor, is attached to a hydroxyl or other functional group of another molecule (a glycosyl acceptor) in order to form a glycoconjugate. In biology (but not always in chemistry), glycosylation usually refers to an enzyme-catalysed reaction, whereas glycation (also 'non-enzymatic glycation' and 'non-enzymatic glycosylation') may refer to a non-enzymatic reaction. Glycosylation is a form of co-translational and post-translational modification.
Delves into the innovations in food biotechnology, including synbiotics supplements and probiotics in locally produced yoghurt, highlighting their economic and health benefits.
Proteins and lipids decorated with glycans are found throughout biological entities, playing roles in biological functions and dysfunctions. Current analytical strategies for these glycan-decorated biomolecules, termed glycoconjugates, rely on ensemble-ave ...
Structural analysis of biomolecules is essential to understanding biological processes. Among the various classes of biomolecules, glycans have gained significant attention recently due to their ubiquitous roles in biological systems. However, study of gly ...
EPFL2022
The importance of glycans in biological processes are matched by their structural complexity. Coating the surfaceof most living cells, glycans play key roles in many biological processes, and the role they play is closely relatedto their structures. Struct ...