The frequency of exceedance, sometimes called the annual rate of exceedance, is the frequency with which a random process exceeds some critical value. Typically, the critical value is far from the mean. It is usually defined in terms of the number of peaks of the random process that are outside the boundary. It has applications related to predicting extreme events, such as major earthquakes and floods.
The frequency of exceedance is the number of times a stochastic process exceeds some critical value, usually a critical value far from the process' mean, per unit time. Counting exceedance of the critical value can be accomplished either by counting peaks of the process that exceed the critical value or by counting upcrossings of the critical value, where an upcrossing is an event where the instantaneous value of the process crosses the critical value with positive slope. This article assumes the two methods of counting exceedance are equivalent and that the process has one upcrossing and one peak per exceedance. However, processes, especially continuous processes with high frequency components to their power spectral densities, may have multiple upcrossings or multiple peaks in rapid succession before the process reverts to its mean.
Consider a scalar, zero-mean Gaussian process y(t) with variance σy2 and power spectral density Φy(f), where f is a frequency. Over time, this Gaussian process has peaks that exceed some critical value ymax > 0. Counting the number of upcrossings of ymax, the frequency of exceedance of ymax is given by
N0 is the frequency of upcrossings of 0 and is related to the power spectral density as
For a Gaussian process, the approximation that the number of peaks above the critical value and the number of upcrossings of the critical value are the same is good for ymax/σy > 2 and for narrow band noise.
For power spectral densities that decay less steeply than f−3 as f→∞, the integral in the numerator of N0 does not converge. Hoblit gives methods for approximating N0 in such cases with applications aimed at continuous gusts.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A return period, also known as a recurrence interval or repeat interval, is an average time or an estimated average time between events such as earthquakes, floods, landslides, or river discharge flows to occur. It is a statistical measurement typically based on historic data over an extended period, and is used usually for risk analysis. Examples include deciding whether a project should be allowed to go forward in a zone of a certain risk or designing structures to withstand events with a certain return period.
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the time between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate. It is a particular case of the gamma distribution. It is the continuous analogue of the geometric distribution, and it has the key property of being memoryless. In addition to being used for the analysis of Poisson point processes it is found in various other contexts.
Extreme value theory provides an asymptotically justified framework for estimation of exceedance probabilities in regions where few or no observations are available. For multivariate tail estimation, the strength of extremal dependence is crucial and it is ...
The scaling relation between the drainage area and stream length (Hack’s law), along with exceedance probabilities of drainage area, discharge and upstream flow network length are well known for channelized fluvial regions. We report here on a laboratory e ...
2018
, ,
Sediment transport in overland flow interacts dynamically with the soil surface morphology, which is often assumed to be static. This assumption, although it limits the predictive capacity of models, is reasonable since the morphological evolution is diffi ...