In mathematics, the octonions are a normed division algebra over the real numbers, a kind of hypercomplex number system. The octonions are usually represented by the capital letter O, using boldface O or blackboard bold . Octonions have eight dimensions; twice the number of dimensions of the quaternions, of which they are an extension. They are noncommutative and nonassociative, but satisfy a weaker form of associativity; namely, they are alternative. They are also power associative.
Octonions are not as well known as the quaternions and complex numbers, which are much more widely studied and used. Octonions are related to exceptional structures in mathematics, among them the exceptional Lie groups. Octonions have applications in fields such as string theory, special relativity and quantum logic. Applying the Cayley–Dickson construction to the octonions produces the sedenions.
The octonions were discovered in 1843 by John T. Graves, inspired by his friend William Rowan Hamilton's discovery of quaternions. Graves called his discovery "octaves", and mentioned them in a letter to Hamilton dated 26 December 1843. He first published his result slightly later than Arthur Cayley's article. The octonions were discovered independently by Cayley and are sometimes referred to as "Cayley numbers" or the "Cayley algebra". Hamilton described the early history of Graves's discovery.
The octonions can be thought of as octets (or 8-tuples) of real numbers. Every octonion is a real linear combination of the unit octonions:
where e0 is the scalar or real element; it may be identified with the real number 1. That is, every octonion x can be written in the form
with real coefficients xi.
Addition and subtraction of octonions is done by adding and subtracting corresponding terms and hence their coefficients, like quaternions. Multiplication is more complex. Multiplication is distributive over addition, so the product of two octonions can be calculated by summing the products of all the terms, again like quaternions.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course is based on Durrett's text book
Probability: Theory and Examples.
It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.
In mathematics, specifically in abstract algebra, power associativity is a property of a binary operation that is a weak form of associativity. An algebra (or more generally a magma) is said to be power-associative if the subalgebra generated by any element is associative. Concretely, this means that if an element is performed an operation by itself several times, it doesn't matter in which order the operations are carried out, so for instance .
In abstract algebra, an alternative algebra is an algebra in which multiplication need not be associative, only alternative. That is, one must have for all x and y in the algebra. Every associative algebra is obviously alternative, but so too are some strictly non-associative algebras such as the octonions. Alternative algebras are so named because they are the algebras for which the associator is alternating. The associator is a trilinear map given by By definition, a multilinear map is alternating if it vanishes whenever two of its arguments are equal.
In abstract algebra, the sedenions form a 16-dimensional noncommutative and nonassociative algebra over the real numbers, usually represented by the capital letter S, boldface S or blackboard bold . They are obtained by applying the Cayley–Dickson construction to the octonions, and as such the octonions are isomorphic to a subalgebra of the sedenions. Unlike the octonions, the sedenions are not an alternative algebra. Applying the Cayley–Dickson construction to the sedenions yields a 32-dimensional algebra, sometimes called the 32-ions or trigintaduonions.
Nowadays, one area of research in cryptanalysis is solving the Discrete Logarithm Problem (DLP) in finite groups whose group representation is not yet exploited. For such groups, the best one can do is using a generic method to attack the DLP, the fastest ...
The fractional Laplacian (-Delta)(gamma/2) commutes with the primary coordination transformations in the Euclidean space Rd: dilation, translation and rotation, and has tight link to splines, fractals and stable Levy processes. For 0 < gamma < d, its inver ...
This master project on algebraic coding theory gathers various techniques from lattice theory, central simple algebras and algebraic number theory. The thesis begins with the formulation of the engineering problem into mathematical form. It presents how sp ...