Dans la théorie des probabilités, un élément aléatoire est une généralisation de la notion de variable aléatoire à des espaces plus complexes qu'une ligne réelle. Le concept a été introduit par Maurice Fréchet (1948), qui a fait remarquer que le "développement de la théorie des probabilités et l'expansion de ses applications ont amené à la nécessité de passer de schémas où les résultats d'expériences aléatoire peuvent être décrites par des nombres ou par un ensemble fini de nombre, à un schéma où les résultats des expériences représentent, par exemple, des vecteurs, des fonctions, des processus, des champs, des séries, des transformations, ainsi qu'à des ensembles ou à plusieurs ensembles." L'utilisation moderne de l'«élément aléatoire» suppose souvent que l'espace de valeurs est un espace vectoriel topologique, souvent un Banach ou un espace de Hilbert avec une algèbre de sigma naturelle de sous-ensembles. Soit un espace de probabilité, et un espace mesurable. Un élément aléatoire à valeurs dans E est une fonction X: Ω→E qui est mesurable . Autrement dit, une fonction X telle que pour toute , l' de B se trouve dans . Parfois, les éléments aléatoires avec des valeurs en sont appelés les variables aléatoire . Notez que si , où sont des nombres réels, et est sa tribu borélienne, ainsi, la définition de l'élément aléatoire est similaire à la définition classique de la variable aléatoire. La définition d'un élément aléatoire avec des valeurs comprise dans l'espace de Banach est généralement entendu comme le fait d'utiliser la plus petite algèbre sur B pour lequel chaque opérateur borné est mesurable. Une définition équivalente, est qu'un plan , à partir d'un espace de probabilité, est un élément aléatoire si est une variable aléatoire pour chaque fonction linéaire bornée f, ou de façon équivalente, que est difficilement mesurable. variable aléatoireUne variable aléatoire est le type le plus simple d'élément aléatoire. C'est un plan est une fonction mesurable de l'ensemble des résultats possibles de à .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.