Summary
A reluctance motor is a type of electric motor that induces non-permanent magnetic poles on the ferromagnetic rotor. The rotor does not have any windings. It generates torque through magnetic reluctance. Reluctance motor subtypes include synchronous, variable, switched and variable stepping. Reluctance motors can deliver high power density at low cost, making them attractive for many applications. Disadvantages include high torque ripple (the difference between maximum and minimum torque during one revolution) when operated at low speed, and noise due to torque ripple. Until the early twenty-first century, their use was limited by the complexity of designing and controlling them. Advances in theory, computer design tools, and low-cost embedded systems for control overcame these obstacles. Microcontrollers use real-time computing control algorithms to tailor drive waveforms according to rotor position and current/voltage feedback. Before the development of large-scale integrated circuits, the control electronics were prohibitively costly. The stator consists of multiple projecting (salient) electromagnet poles, similar to a wound field brushed DC motor. The rotor consists of soft magnetic material, such as laminated silicon steel, which has multiple projections acting as salient magnetic poles through magnetic reluctance. For switched reluctance motors, the number of rotor poles is typically less than the number of stator poles, which minimizes torque ripple and prevents the poles from all aligning simultaneously—a position that cannot generate torque. When a stator pole is equidistant from two adjacent rotor poles, the stator pole is said to be in the "fully unaligned position". This is the position of maximum magnetic reluctance for the rotor pole. In the "aligned position", two (or more) rotor poles are fully aligned with two (or more) stator poles, (which means the rotor poles completely face the stator poles) and is a position of minimum reluctance. When a stator pole is energized, the rotor torque is in the direction that reduces reluctance.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.