In mathematics, a group is called elementary amenable if it can be built up from finite groups and abelian groups by a sequence of simple operations that result in amenable groups when applied to amenable groups. Since finite groups and abelian groups are amenable, every elementary amenable group is amenable - however, the converse is not true.
Formally, the class of elementary amenable groups is the smallest subclass of the class of all groups that satisfies the following conditions:
it contains all finite and all abelian groups
if G is in the subclass and H is isomorphic to G, then H is in the subclass
it is closed under the operations of taking subgroups, forming quotients, and forming extensions
it is closed under directed unions.
The Tits alternative implies that any amenable linear group is locally virtually solvable; hence, for linear groups, amenability and elementary amenability coincide.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a matrix group is a group G consisting of invertible matrices over a specified field K, with the operation of matrix multiplication. A linear group is a group that is isomorphic to a matrix group (that is, admitting a faithful, finite-dimensional representation over K). Any finite group is linear, because it can be realized by permutation matrices using Cayley's theorem. Among infinite groups, linear groups form an interesting and tractable class.
The objective of this series is to study metric geometric properties of disjoint unions of Cayley graphs of amenable groups by group properties of the Cayley accumulation points in the space of marked groups. In this Part II, we prove that a disjoint union ...
The Tarski number of a nonamenable group is the smallest number of pieces needed for a paradoxical decomposition of the group. Nonamenable groups of piecewise projective homeomorphisms were introduced in [N. Monod, Groups of piecewise projective homeomorph ...
We propose elementary and explicit presentations of groups that have no amenable quotients and yet are SQ-universal. Examples include groups with a finite K (pi,1), no Kazhdan subgroups and no Haagerup quotients. ...