Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The Tarski number of a nonamenable group is the smallest number of pieces needed for a paradoxical decomposition of the group. Nonamenable groups of piecewise projective homeomorphisms were introduced in [N. Monod, Groups of piecewise projective homeomorphisms, Proc. Natl. Acad. Sci. 110(12) (2013) 4524-4527], and nonamenable finitely presented groups of piecewise projective homeomorphisms were introduced in [Y. Lodha and J. T. Moore, A finitely presented non amenable group of piecewise projective homeomorphisms, Groups, Geom. Dyn. 10(1) (2016) 177-200]. These groups do not contain non-abelian free subgroups. In this paper, we prove that the Tarski number of all groups in both families is at most 25. In particular, we demonstrate the existence of a paradoxical decomposition with 25 pieces. Our argument also applies to any group of piecewise projective homeomorphisms that contains as a subgroup the group of piecewise PSL2(Z) homeomorphisms of R with rational breakpoints and an affine map that is a not an integer translation.