Résumé
In mathematics, a matrix group is a group G consisting of invertible matrices over a specified field K, with the operation of matrix multiplication. A linear group is a group that is isomorphic to a matrix group (that is, admitting a faithful, finite-dimensional representation over K). Any finite group is linear, because it can be realized by permutation matrices using Cayley's theorem. Among infinite groups, linear groups form an interesting and tractable class. Examples of groups that are not linear include groups which are "too big" (for example, the group of permutations of an infinite set), or which exhibit some pathological behavior (for example, finitely generated infinite torsion groups). A group G is said to be linear if there exists a field K, an integer d and an injective homomorphism from G to the general linear group GLd (K) (a faithful linear representation of dimension d over K): if needed one can mention the field and dimension by saying that G is linear of degree d over K. Basic instances are groups which are defined as subgroups of a linear group, for example: The group GLn(K) itself; The special linear group SLn(K) (the subgroup of matrices with determinant 1); The group of invertible upper (or lower) triangular matrices If gi is a collection of elements in GLn(K) indexed by a set I, then the subgroup generated by the gi is a linear group. In the study of Lie groups, it is sometimes pedagogically convenient to restrict attention to Lie groups that can be faithfully represented over the field of complex numbers. (Some authors require that the group be represented as a closed subgroup of the GLn(C).) Books that follow this approach include Hall (2015) and Rossmann (2002). The so-called classical groups generalize the examples 1 and 2 above. They arise as linear algebraic groups, that is, as subgroups of GLn defined by a finite number of equations. Basic examples are orthogonal, unitary and symplectic groups but it is possible to construct more using division algebras (for example the unit group of a quaternion algebra is a classical group).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.