In mathematics, specifically abstract algebra, an Artinian module is a module that satisfies the descending chain condition on its poset of submodules. They are for modules what Artinian rings are for rings, and a ring is Artinian if and only if it is an Artinian module over itself (with left or right multiplication). Both concepts are named for Emil Artin.
In the presence of the axiom of (dependent) choice, the descending chain condition becomes equivalent to the minimum condition, and so that may be used in the definition instead.
Like Noetherian modules, Artinian modules enjoy the following heredity property:
If M is an Artinian R-module, then so is any submodule and any quotient of M.
The converse also holds:
If M is any R-module and N any Artinian submodule such that M/N is Artinian, then M is Artinian.
As a consequence, any finitely-generated module over an Artinian ring is Artinian. Since an Artinian ring is also a Noetherian ring, and finitely-generated modules over a Noetherian ring are Noetherian, it is true that for an Artinian ring R, any finitely-generated R-module is both Noetherian and Artinian, and is said to be of finite length. It also follows that any finitely generated Artinian module is Noetherian even without the assumption of R being Artinian. However, if R is not Artinian and M is not finitely-generated, there are counterexamples.
The ring R can be considered as a right module, where the action is the natural one given by the ring multiplication on the right. R is called right Artinian when this right module R is an Artinian module. The definition of "left Artinian ring" is done analogously. For noncommutative rings this distinction is necessary, because it is possible for a ring to be Artinian on one side but not the other.
The left-right adjectives are not normally necessary for modules, because the module M is usually given as a left or right R-module at the outset. However, it is possible that M may have both a left and right R-module structure, and then calling M Artinian is ambiguous, and it becomes necessary to clarify which module structure is Artinian.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In abstract algebra, a Noetherian module is a module that satisfies the ascending chain condition on its submodules, where the submodules are partially ordered by inclusion. Historically, Hilbert was the first mathematician to work with the properties of finitely generated submodules. He proved an important theorem known as Hilbert's basis theorem which says that any ideal in the multivariate polynomial ring of an arbitrary field is finitely generated.
In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist a and b in the ring such that ab and ba are different. Equivalently, a noncommutative ring is a ring that is not a commutative ring. Noncommutative algebra is the part of ring theory devoted to study of properties of the noncommutative rings, including the properties that apply also to commutative rings. Sometimes the term noncommutative ring is used instead of ring to refer to an unspecified ring which is not necessarily commutative, and hence may be commutative.
In abstract algebra, Morita equivalence is a relationship defined between rings that preserves many ring-theoretic properties. More precisely two rings like R, S are Morita equivalent (denoted by ) if their are equivalent (denoted by ). It is named after Japanese mathematician Kiiti Morita who defined equivalence and a similar notion of duality in 1958. Rings are commonly studied in terms of their modules, as modules can be viewed as representations of rings.
Covers the dimension theory of rings, including additivity of dimension and height, Krull's Hauptidealsatz, and the height of general complete intersections.
Because building-integrated photovoltaic (BIPV) modules are fully integrated into a building envelope, the back of the module can be exposed to little or no ventilation, resulting in increased operating temperatures. As the temperature increases, the perfo ...
We provide a new description of the complex computing the Hochschild homology of an -unitary -algebra as a derived tensor product such that: (1) there is a canonical morphism from it to the complex computing the cyclic homology of that was introduced by Ko ...
This paper presents a novel deep architecture for weakly-supervised temporal action localization that not only generates segment-level action responses but also propagates segment-level responses to the neighborhood in a form of graph Laplacian regularizat ...