Concept

Artinian module

Summary
In mathematics, specifically abstract algebra, an Artinian module is a module that satisfies the descending chain condition on its poset of submodules. They are for modules what Artinian rings are for rings, and a ring is Artinian if and only if it is an Artinian module over itself (with left or right multiplication). Both concepts are named for Emil Artin. In the presence of the axiom of (dependent) choice, the descending chain condition becomes equivalent to the minimum condition, and so that may be used in the definition instead. Like Noetherian modules, Artinian modules enjoy the following heredity property:
  • If M is an Artinian R-module, then so is any submodule and any quotient of M. The converse also holds:
  • If M is any R-module and N any Artinian submodule such that M/N is Artinian, then M is Artinian. As a consequence, any finitely-generated module over an Artinian ring is Artinian. Since an Artinian ring is also a Noetherian ring, and finitely-generated modules over a N
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading