Zinc phosphate is an inorganic compound with the formula Zn3(PO4)2. This white powder is widely used as a corrosion resistant coating on metal surfaces either as part of an electroplating process or applied as a primer pigment (see also red lead). It has largely displaced toxic materials based on lead or chromium, and by 2006 it had become the most commonly used corrosion inhibitor. Zinc phosphate coats better on a crystalline structure than bare metal, so a seeding agent is often used as a pre-treatment. One common agent is sodium pyrophosphate.
Natural forms of zinc phosphate include minerals hopeite and parahopeite. A somewhat similar mineral is natural hydrous zinc phosphate called tarbuttite, Zn2(PO4)(OH). Both are known from oxidation zones of Zn ore beds and were formed through oxidation of sphalerite by the presence of phosphate-rich solutions. The anhydrous form has not yet been found naturally.
Zinc phosphate cement is the classic dental cement par excellence. It is commonly used for luting permanent metal and zirconium dioxide restorations and as a base for dental restorations. Zinc phosphate cement is used for cementation of inlays, crowns, bridges, and orthodontic appliances and occasionally as a temporary restoration.
It is prepared by mixing zinc oxide (ZnO) and magnesium oxide (MgO2) powders with a liquid consisting principally of phosphoric acid, water, and buffers. It is the standard cement to measure against. It has the longest track record of use in dentistry.
In recent years, newer adhesive cements on a different chemical basis have been added (e.g. glass ionomer cement), but they have not displaced the classic phosphate cement, which continues to hold its own in the dental market with its simple and safe processing and good price-performance ratio. Zinc phosphate cement has only a low flexural strength and it does not stick to the dentin (it is a cement and not an adhesive).
Zinc phosphate cement has high compressive strength, low film thickness, minimal setting shrinkage and thermal expansion and is biocompatible.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A glass ionomer cement (GIC) is a dental restorative material used in dentistry as a filling material and luting cement, including for orthodontic bracket attachment. Glass-ionomer cements are based on the reaction of silicate glass-powder (calciumaluminofluorosilicate glass) and polyacrylic acid, an ionomer. Occasionally water is used instead of an acid, altering the properties of the material and its uses. This reaction produces a powdered cement of glass particles surrounded by matrix of fluoride elements and is known chemically as glass polyalkenoate.
Dental products are specially fabricated materials, designed for use in dentistry. There are many different types of dental products, and their characteristics vary according to their intended purpose. A temporary dressing is a dental filling which is not intended to last in the long term. They are interim materials which may have therapeutic properties. A common use of temporary dressing occurs if root canal therapy is carried out over more than one appointment.
In dentistry, a crown or a dental cap is a type of dental restoration that completely caps or encircles a tooth or dental implant. A crown may be needed when a large dental cavity threatens the health of a tooth. A crown is typically bonded to the tooth by dental cement. They can be made from various materials, which are usually fabricated using indirect methods. Crowns are used to improve the strength or appearance of teeth and to halt deterioration. While beneficial to dental health, the procedure and materials can be costly.
In this study, we examined the removal kinetics of two fluoroquinolones (FQs), flumequine (FLU) and ciprofloxacin (CIP), in synthetic wastewater (SWW) and real hospital wastewater (RHW) using FeOx thin films, peroxymonosulfate (PMS) and visible light. Nano ...
Biodegradable polymers are increasingly at the heart of therapeutic devices. Particularly in the form of thin and elongated fibers, they offer an effective strategy for controlled-release in a variety of biomedical configurations such as sutures, scaffolds ...
EPFL2020
, ,
Tribocorrosion, as the interaction between mechanical wear and electrochemical corrosion, has been found to be the main problem causing the failure and limiting the lifetime of metal-on-metal artificial hip joints. Better understanding of the tribocorrosio ...