Summary
A glass ionomer cement (GIC) is a dental restorative material used in dentistry as a filling material and luting cement, including for orthodontic bracket attachment. Glass-ionomer cements are based on the reaction of silicate glass-powder (calciumaluminofluorosilicate glass) and polyacrylic acid, an ionomer. Occasionally water is used instead of an acid, altering the properties of the material and its uses. This reaction produces a powdered cement of glass particles surrounded by matrix of fluoride elements and is known chemically as glass polyalkenoate. There are other forms of similar reactions which can take place, for example, when using an aqueous solution of acrylic/itaconic copolymer with tartaric acid, this results in a glass-ionomer in liquid form. An aqueous solution of maleic acid polymer or maleic/acrylic copolymer with tartaric acid can also be used to form a glass-ionomer in liquid form. Tartaric acid plays a significant part in controlling the setting characteristics of the material. Glass-ionomer based hybrids incorporate another dental material, for example resin-modified glass ionomer cements (RMGIC) and compomers (or modified composites). Non-destructive neutron scattering has evidenced GIC setting reactions to be non-monotonic, with eventual fracture toughness dictated by changing atomic cohesion, fluctuating interfacial configurations and interfacial terahertz (THz) dynamics. It is on the World Health Organization's List of Essential Medicines. Glass ionomer cement is primarily used in the prevention of dental caries. This dental material has good adhesive bond properties to tooth structure, allowing it to form a tight seal between the internal structures of the tooth and the surrounding environment. Dental caries are caused by bacterial production of acid during their metabolic actions. The acid produced from this metabolism results in the breakdown of tooth enamel and subsequent inner structures of the tooth, if the disease is not intervened by a dental professional, or if the carious lesion does not arrest and/or the enamel re-mineralises by itself.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.