Summary
Insulin resistance (IR) is a pathological condition in which cells either fail to respond normally to the hormone insulin or downregulate insulin receptors in response to hyperinsulinemia. Insulin is a hormone that facilitates the transport of glucose from blood into cells, thereby reducing blood glucose (blood sugar). Insulin is released by the pancreas in response to carbohydrates consumed in the diet. In states of insulin resistance, the same amount of insulin does not have the same effect on glucose transport and blood sugar levels. There are many causes of insulin resistance and the underlying process is still not completely understood. Risk factors for insulin resistance include obesity, sedentary lifestyle, family history of diabetes, various health conditions, and certain medications. Insulin resistance is considered a component of the metabolic syndrome. There are multiple ways to measure insulin resistance such as fasting insulin levels or glucose tolerance tests, but these are not often used in clinical practice. Insulin resistance can be improved or reversed with lifestyle approaches, such as exercise and dietary changes. There are a number of risk factors for insulin resistance, including being overweight or obese or having a sedentary lifestyle. Various genetic factors can increase risk, such as a family history of diabetes, and there are some specific medical conditions associated with insulin resistance, such as polycystic ovary syndrome. The U.S. National Institute of Diabetes and Digestive and Kidney Diseases states that specific risks that may predispose an individual to insulin resistance can include: being aged 45 or older having African American, Alaska Native, American Indian, Asian American, Hispanic/Latino, Native Hawaiian, or Pacific Islander American ethnicity having health conditions such as high blood pressure and abnormal cholesterol levels having a history of gestational diabetes having a history of heart disease or stroke. In addition some medications and other health conditions can raise the risk.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (4)
BIO-377: Physiology by systems
Le but est de connaitre et comprendre le fonctionnement des systèmes cardiovasculaire, urinaire, respiratoire, digestif, ainsi que du métabolisme de base et sa régulation afin de déveloper une réflect
BIO-478: Pharmacology and pharmacokinetics
This course introduces the student to the fudamentals of pharmacology, pharmacokinetics and drug-receptor interactions. It discusses also pharmacogenetics and chronopharmacology, to exemplify the chal
CH-317: Drug discovery and development
This course discusses the molecular basis of diseases and how drugs work. Concepts and processes employed in today's drug discovery and development are covered. The first part of the course focuses on
Show more
Related lectures (32)
The Silent Weight Culprit: How Stress Could be expanding Your Waistline
Delves into the relationship between stress and weight gain, revealing how Cortisol and comfort food consumption can silently expand one's waistline.
Dorothy Hodgkin's Discoveries: Penicillin, Vitamin B12, Insulin
Explores Dorothy Hodgkin's pivotal discoveries in chemistry, such as penicillin's structure confirmation and Vitamin B12's complex determination.
Metabolism 1: General Overview
Covers carbohydrate, lipid, and protein metabolism, insulin-receptor interaction, fat storage, and blood glucose control.
Show more
Related publications (195)

SLC25A46 promotes mitochondrial fission and mediates resistance to lipotoxic stress in INS-1E insulin-secreting cells

Loïc Dayon, Andreas Wiederkehr

Glucose sensing in pancreatic D-cells depends on oxidative phosphorylation and mitochondria-derived signals that promote insulin secretion. Using mass spectrometry-based phosphoproteo-mics to search for downstream effectors of glucose-dependent signal tran ...
COMPANY BIOLOGISTS LTD2023
Show more
Related concepts (21)
Obesity
Obesity is a medical condition, sometimes considered a disease, in which excess body fat has accumulated to such an extent that it negatively affects health. People are classified as obese when their body mass index (BMI)—a person's weight divided by the square of the person's height—is over 30kg/m2; the range 25kg/m2 is defined as overweight. Some East Asian countries use lower values to calculate obesity.
Diabetes
Diabetes mellitus, often known simply as diabetes, is a group of common endocrine diseases characterized by sustained high blood sugar levels. Diabetes is due to either the pancreas not producing enough insulin, or the cells of the body becoming unresponsive to the hormone's effects. Classic symptoms include thirst, polyuria, weight loss, and blurred vision. If left untreated, the disease can lead to various health complications, including disorders of the cardiovascular system, eye, kidney, and nerves.
Type 2 diabetes
Type 2 diabetes, formerly known as adult-onset diabetes, is a form of diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. Common symptoms include increased thirst, frequent urination, and unexplained weight loss. Symptoms may also include increased hunger, feeling tired, and sores (wounds) that do not heal. Often symptoms come on slowly. Long-term complications from high blood sugar include heart disease, strokes, diabetic retinopathy which can result in blindness, kidney failure, and poor blood flow in the limbs which may lead to amputations.
Show more
Related MOOCs (4)
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Show more