Quadrupole magnets, abbreviated as Q-magnets, consist of groups of four magnets laid out so that in the planar multipole expansion of the field, the dipole terms cancel and where the lowest significant terms in the field equations are quadrupole. Quadrupole magnets are useful as they create a magnetic field whose magnitude grows rapidly with the radial distance from its longitudinal axis. This is used in particle beam focusing. The simplest magnetic quadrupole is two identical bar magnets parallel to each other such that the north pole of one is next to the south of the other and vice versa. Such a configuration will have no dipole moment, and its field will decrease at large distances faster than that of a dipole. A stronger version with very little external field involves using a k=3 Halbach cylinder. In some designs of quadrupoles using electromagnets, there are four steel pole tips: two opposing magnetic north poles and two opposing magnetic south poles. The steel is magnetized by a large electric current in the coils of tubing wrapped around the poles. Another design is a Helmholtz coil layout but with the current in one of the coils reversed. Strong focusing At the particle speeds reached in high energy particle accelerators, the magnetic force term is larger than the electric term in the Lorentz force: and thus magnetic deflection is more effective than electrostatic deflection. Therefore a 'lattice' of electromagnets is used to bend, steer and focus a charged particle beam. The quadrupoles in the lattice are of two types: 'F quadrupoles' (which are horizontally focusing but vertically defocusing) and 'D quadrupoles' (which are vertically focusing but horizontally defocusing). This situation is due to the laws of electromagnetism (the Maxwell equations) which show that it is impossible for a quadrupole to focus in both planes at the same time. The image on the right shows an example of a quadrupole focusing in the vertical direction for a positively charged particle going into the image plane (forces above and below the center point towards the center) while defocusing in the horizontal direction (forces left and right of the center point away from the center).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (5)
PHYS-448: Introduction to particle accelerators
The course presents basic physics ideas underlying the workings of modern accelerators. We will examine key features and limitations of these machines as used in accelerator driven sciences like high
PHYS-751: Advanced concepts in particle accelerators
Accelerator physics covers a wide range of very exciting topics. This course presents basic physics ideas and the technologies underlying the workings of modern accelerators. An overview of the new id
CH-609: Introduction to the ChemInfo ELN of ISIC
This course will be on Electronic Laboratory Notebooks and is aimed at (future) users. Multiple electronic lab notebooks exists. The course will focus on the Cheminfo tools (https://eln.epfl.ch/).
Show more
Related lectures (33)
Linear Dynamics: Hamiltonians and Machine Elements
Explores Hamiltonians for machine elements, focusing on drift space, magnets, and linear maps.
Linear Beam Dynamics
Covers the Hamiltonian formalism, linear equations, Courant-Snyder parametrization, and chromatic effects in accelerator physics.
Dynamic Systems TheoryMOOC: Conversion electromécanique I
Covers the theory of dynamic systems, including equations of motion and single coil system examples.
Show more
Related publications (52)

Characterization of Transverse Instabilities Driven by Electron Cloud

Sofia Carolina Johannesson

Electron cloud continues to be one of the main limiting factors of the Large Hadron Collider (LHC), the biggest accelerator at CERN. These clouds form in the beam chamber when positively charged particles are passing through and cause unwanted effects in b ...
EPFL2024

New Capabilities of the FLUKA Multi-Purpose Code

André Donadon Servelle, Nikolaos Charitonidis, Philippe Jean Schoofs, Francesco Cerutti

FLUKA is a general purpose Monte Carlo code able to describe the transport and interaction of any particle and nucleus type in complex geometries over an energy range extending from thermal neutrons to ultrarelativistic hadron collisions. It has many diffe ...
FRONTIERS MEDIA SA2022

Diffusion-Bonding Between Strands and Modeling of Splices of Nb3Sn Rutherford Cables

Pierluigi Bruzzone, Kamil Sedlák, Nikolay Bykovskiy

Particle accelerators foresee the use of Nb3Sn in the next generation of dipole magnets. A common design strategy is to grade the coil, i.e., to optimize the quantity of superconductor in the turns with respect to the magnetic field intensity. As a consequ ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2022
Show more
Related concepts (12)
Particle accelerator
A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle physics. The largest accelerator currently active is the Large Hadron Collider (LHC) near Geneva, Switzerland, operated by the CERN. It is a collider accelerator, which can accelerate two beams of protons to an energy of 6.5 TeV and cause them to collide head-on, creating center-of-mass energies of 13 TeV.
Dipole magnet
A dipole magnet is the simplest type of magnet. It has two poles, one north and one south. Its magnetic field lines form simple closed loops which emerge from the north pole, re-enter at the south pole, then pass through the body of the magnet. The simplest example of a dipole magnet is a bar magnet. In particle accelerators, a dipole magnet is the electromagnet used to create a homogeneous magnetic field over some distance.
Accelerator physics
Accelerator physics is a branch of applied physics, concerned with designing, building and operating particle accelerators. As such, it can be described as the study of motion, manipulation and observation of relativistic charged particle beams and their interaction with accelerator structures by electromagnetic fields. It is also related to other fields: Microwave engineering (for acceleration/deflection structures in the radio frequency range). Optics with an emphasis on geometrical optics (beam focusing and bending) and laser physics (laser-particle interaction).
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.