The dew point of a given body of air is the temperature to which it must be cooled to become saturated with water vapor. This temperature depends on the pressure and water content of the air. When the air is cooled below the dew point, its moisture capacity is reduced and airborne water vapor will condense to form liquid water known as dew. When this occurs through the air's contact with a colder surface, dew will form on that surface.
The dew point is affected by the air's humidity. The more moisture the air contains, the higher its dew point.
When the temperature is below the freezing point of water, the dew point is called the frost point, as frost is formed via deposition rather than condensation.
In liquids, the analog to the dew point is the cloud point.
If all the other factors influencing humidity remain constant, at ground level the relative humidity rises as the temperature falls; this is because less vapor is needed to saturate the air. In normal conditions, the dew point temperature will not be greater than the air temperature, since relative humidity typically does not exceed 100%.
In technical terms, the dew point is the temperature at which the water vapor in a sample of air at constant barometric pressure condenses into liquid water at the same rate at which it evaporates. At temperatures below the dew point, the rate of condensation will be greater than that of evaporation, forming more liquid water. The condensed water is called dew when it forms on a solid surface, or frost if it freezes. In the air, the condensed water is called either fog or a cloud, depending on its altitude when it forms. If the temperature is below the dew point, and no dew or fog forms, the vapor is called supersaturated. This can happen if there are not enough particles in the air to act as condensation nuclei.
The dew point depends on how much water vapor the air contains. If the air is very dry and has few water molecules, the dew point is low and surfaces must be much cooler than the air for condensation to occur.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours est divisé en deux partie. La première partie présente le langage Python et les différences notables entre Python et C++ (utilisé dans le cours précédent ICC). La seconde partie est une intro
The quality of the indoor climate is of great significance to building performance, human comfort, and well-being. This course offers a fundamental knowledge of the parameters that influence indoor cl
Ce cours traite des principaux phénomènes physiques observables dans le bâtiment et doit permettre à l'étudiant d'acquérir des connaissances de base dans le domaine de la physique du bâtiment.
Water vapor, water vapour or aqueous vapor is the gaseous phase of water. It is one state of water within the hydrosphere. Water vapor can be produced from the evaporation or boiling of liquid water or from the sublimation of ice. Water vapor is transparent, like most constituents of the atmosphere. Under typical atmospheric conditions, water vapor is continuously generated by evaporation and removed by condensation. It is less dense than most of the other constituents of air and triggers convection currents that can lead to clouds and fog.
Humidity is the concentration of water vapor present in the air. Water vapor, the gaseous state of water, is generally invisible to the human eye. Humidity indicates the likelihood for precipitation, dew, or fog to be present. Humidity depends on the temperature and pressure of the system of interest. The same amount of water vapor results in higher relative humidity in cool air than warm air. A related parameter is the dew point. The amount of water vapor needed to achieve saturation increases as the temperature increases.
Dew is water in the form of droplets that appears on thin, exposed objects in the morning or evening due to condensation. As the exposed surface cools by radiating its heat, atmospheric moisture condenses at a rate greater than that at which it can evaporate, resulting in the formation of water droplets. When temperatures are low enough, dew takes the form of ice, called frost. Because dew is related to the temperature of surfaces, in late summer it forms most easily on surfaces that are not warmed by conducted heat from deep ground, such as grass, leaves, railings, car roofs, and bridges.
This work is driven by the effort towards increased environmental sustainability and aims to develop a new food packaging material based on renewable materials, and more specifically cellulose as the most abundant biomass resource on Earth. Focus was on mi ...
EPFL2024
, , ,
We study the bactericidal efficacy of surface dielectric barrier discharge low-temperature plasma treatments, powered by nanosecond high voltage pulses. We achieve similar to 4-log reduction in Escherichia coli population, after 10 min treatments, at a dis ...
In this study, data from 17 ground-based, continental Arctic observatories areused to evaluate the performance of the European Centre for Medium-RangeWeather Forecasts Reanalysis version 5 (ERA5) reanalysis model. Three aspectsare evaluated: (i) the overal ...