Summary
Gait is the pattern of movement of the limbs of animals, including humans, during locomotion over a solid substrate. Most animals use a variety of gaits, selecting gait based on speed, terrain, the need to maneuver, and energetic efficiency. Different animal species may use different gaits due to differences in anatomy that prevent use of certain gaits, or simply due to evolved innate preferences as a result of habitat differences. While various gaits are given specific names, the complexity of biological systems and interacting with the environment make these distinctions "fuzzy" at best. Gaits are typically classified according to footfall patterns, but recent studies often prefer definitions based on mechanics. The term typically does not refer to limb-based propulsion through fluid mediums such as water or air, but rather to propulsion across a solid substrate by generating reactive forces against it (which can apply to walking while underwater as well as on land). Due to the rapidity of animal movement, simple direct observation is rarely sufficient to give any insight into the pattern of limb movement. In spite of early attempts to classify gaits based on footprints or the sound of footfalls, it was not until Eadweard Muybridge and Étienne-Jules Marey began taking rapid series of photographs that proper scientific examination of gaits could begin. Milton Hildebrand pioneered the contemporary scientific analysis and the classification of gaits. The movement of each limb was partitioned into a stance phase, where the foot was in contact with the ground, and a swing phase, where the foot was lifted and moved forwards. Each limb must complete a cycle in the same length of time, otherwise one limb's relationship to the others can change with time, and a steady pattern cannot occur. Thus, any gait can completely be described in terms of the beginning and end of stance phase of three limbs relative to a cycle of a reference limb, usually the left hindlimb. Gaits are generally classed as "symmetrical" and "asymmetrical" based on limb movement.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.