A limb is a jointed, muscled appendage of a tetrapod vertebrate animal used for weight-bearing and terrestrial locomotion. The distalmost portion of a limb is known as its extremity. The limbs' bony endoskeleton, known as the appendicular skeleton, is homologous among all tetrapods, who use their limbs for walking, running and jumping, swimming, grasping and climbing.
All tetrapods have four limbs that are organized into two bilaterally symmetrical pairs, with one pair at each end of the torso, which phylogenetrically correspond to the four paired fins (pectoral and pelvic fins) of their fish ancestors. The cranial pair (i.e. closer to the head) of limbs are known as the forelimbs or front legs, and the caudal pair (i.e. closer to the tail or coccyx) are the hindlimbs or back legs. In animals with a more erect bipedal posture (mainly hominid primates, particularly humans), the forelimbs and hindlimbs are often called upper and lower limbs, respectively. The fore-/upper limbs are connected to the thoracic cage via the shoulder girdles, and the hind-/lower limbs are connected to the pelvis via the hip joints. Many animals, especially the arboreal species, have prehensile forelimbs adapted for grasping and climbing, while some (mostly primates) can also use hindlimbs for grasping. Some animals (birds and bats) have expanded forelimbs (and sometimes hindlimbs as well) with specialized feathers or membranes to achieve lift and fly. Aquatic tetrapods usually have limb features (such as webbings) adapted to better provide propulsion in water, while marine mammals and sea turtles have convergently evolved flattened, paddle-like limbs known as flippers.
In human anatomy, the upper and lower limbs are commonly known as the arms and legs respectively, although in academic usage, these terms refer specifically to the upper arm and lower leg (the lower arm and upper leg are instead called forearm and thigh, respectively). The human arms have relatively great ranges of motion and are highly adapted for grasping and for carrying objects.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours est une préparation intensive à l'examen d'entrée en 3ème année de Médecine. Les matières enseignées sont la morphologie macroscopique (anatomie) , microscopique (histologie) de la tête, du c
Neuroengineering is at the frontier between neuroscience and engineering: understanding how the brain works allows developing engineering applications and therapies of high impact, while the design of
A leg is a weight-bearing and locomotive anatomical structure, usually having a columnar shape. During locomotion, legs function as "extensible struts". The combination of movements at all joints can be modeled as a single, linear element capable of changing length and rotating about an omnidirectional "hip" joint. As an anatomical animal structure it is used for locomotion. The distal end is often modified to distribute force (such as a foot). Most animals have an even number of legs.
The shoulder girdle or pectoral girdle is the set of bones in the appendicular skeleton which connects to the arm on each side. In humans it consists of the clavicle and scapula; in those species with three bones in the shoulder, it consists of the clavicle, scapula, and coracoid. Some mammalian species (such as the dog and the horse) have only the scapula. The pectoral girdles are to the upper limbs as the pelvic girdle is to the lower limbs; the girdles are the parts of the appendicular skeleton that anchor the appendages to the axial skeleton.
Terrestrial locomotion has evolved as animals adapted from aquatic to terrestrial environments. Locomotion on land raises different problems than that in water, with reduced friction being replaced by the increased effects of gravity. As viewed from evolutionary taxonomy, there are three basic forms of animal locomotion in the terrestrial environment: legged – moving by using appendages limbless locomotion – moving without legs, primarily using the body itself as a propulsive structure.
The human upper limb is a complex musculoskeletal system that can still perform various tasks with impressive efficacy thanks to the ability of the central nervous system to control and modulate the activation of more than 40 muscles.Stroke is a leading ca ...
In the context of extra-terrestrial missions, the effects of hypogravity (0 < G < 1) on the human body can reduce the well-being of the crew, cause musculoskeletal problems and affect their ability to perform tasks, especially during long-term missions. To ...
Experiments on the lower limbs are the only approaches being used to study how hypogravity (HG) (0 < g < 1, e.g., Moon: 1/6 g, Mars: 3/8 g) affects human movement. The goal of this study was to expand this field experimentally by investigating the effect o ...