Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Beta cells (β-cells) are a type of cell found in pancreatic islets that synthesize and secrete insulin and amylin. Beta cells make up 50–70% of the cells in human islets. In patients with Type 1 diabetes, beta-cell mass and function are diminished, leading to insufficient insulin secretion and hyperglycemia. The primary function of a beta cell is to produce and release insulin and amylin. Both are hormones which reduce blood glucose levels by different mechanisms. Beta cells can respond quickly to spikes in blood glucose concentrations by secreting some of their stored insulin and amylin while simultaneously producing more. Primary cilia on beta cells regulate their function and energy metabolism. Cilia deletion can lead to islet dysfunction and type 2 diabetes. Beta cells are the only site of insulin synthesis in mammals. As glucose stimulates insulin secretion, it simultaneously increases proinsulin biosynthesis, mainly through translational control. The insulin gene is first transcribed into mRNA and translated into preproinsulin. After translation, the preproinsulin precursor contains an N-terminal signal peptide that allows translocation into the rough endoplasmic reticulum (RER). Inside the RER, the signal peptide is cleaved to form proinsulin. Then, folding of proinsulin occurs forming three disulfide bonds. Subsequent to protein folding, proinsulin is transported to the Golgi apparatus and enters immature insulin granules where proinsulin is cleaved to form insulin and C-peptide. After maturation, these secretory vesicles hold insulin, C-peptide, and amylin until calcium triggers exocytosis of the granule contents. Through translational processing, insulin is encoded as a 110 amino acid precursor but is secreted as a 51 amino acid protein. In beta cells, insulin release is stimulated primarily by glucose present in the blood. As circulating glucose levels rise such as after ingesting a meal, insulin is secreted in a dose-dependent fashion. This system of release is commonly referred to as glucose-stimulated insulin secretion (GSIS).
Loïc Dayon, Andreas Wiederkehr