Autocrine signaling is a form of cell signaling in which a cell secretes a hormone or chemical messenger (called the autocrine agent) that binds to autocrine receptors on that same cell, leading to changes in the cell. This can be contrasted with paracrine signaling, intracrine signaling, or classical endocrine signaling.
An example of an autocrine agent is the cytokine interleukin-1 in monocytes. When interleukin-1 is produced in response to external stimuli, it can bind to cell-surface receptors on the same cell that produced it.
Another example occurs in activated T cell lymphocytes, i.e., when a T cell is induced to mature by binding to a peptide:MHC complex on a professional antigen-presenting cell and by the B7:CD28 costimulatory signal. Upon activation, "low-affinity" IL-2 receptors are replaced by "high-affinity" IL-2 receptors consisting of α, β, and γ chains. The cell then releases IL-2, which binds to its own new IL-2 receptors, causing self-stimulation and ultimately a monoclonal population of T cells. These T cells can then go on to perform effector functions such as macrophage activation, B cell activation, and cell-mediated cytoxicity.
Tumor development is a complex process that requires cell division, growth, and survival. One approach used by tumors to upregulate growth and survival is through autocrine production of growth and survival factors. Autocrine signaling plays critical roles in cancer activation and also in providing self-sustaining growth signals to tumors.
Normally, the Wnt signaling pathway leads to stabilization of β-catenin through inactivation of a protein complex containing the tumor suppressors APC and Axin. This destruction complex normally triggers β-catenin phosphorylation, inducing its degradation. De-regulation of the autocrine Wnt signaling pathway via mutations in APC and Axin have been linked to activation of various types of human cancer. Genetic alterations that lead to de-regulation of the autocrine Wnt pathway result in transactivation of epidermal growth factor receptor (EGFR) and other pathways, in turn contributing to proliferation of tumor cells.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Presentation of selected signalling pathways with emphasis on both the mechanism of action of the molecules involved, molecular interactions and the role of their spatio-temporal organization within t
This course provides a comprehensive overview of the biology of cancer, illustrating the mechanisms that cancer cells use to grow and disseminate at the expense of normal tissues and organs.
The course starts with fundamentals of electrical - and chemical signaling in neurons. Students then learn how neurons in the brain receive and process sensory information, and how other neurons contr
Covers sustaining proliferation in cancer cells, growth factors, receptor tyrosine kinases, signal transduction, viral oncogenes, and therapeutic opportunities.
Explores programmed cell death mechanisms, including apoptosis and autophagy, with a focus on their implications in various organisms and regeneration processes.
In biology, cell signaling (cell signalling in British English) or cell communication is the ability of a cell to receive, process, and transmit signals with its environment and with itself. Cell signaling is a fundamental property of all cellular life in prokaryotes and eukaryotes. Signals that originate from outside a cell (or extracellular signals) can be physical agents like mechanical pressure, voltage, temperature, light, or chemical signals (e.g., small molecules, peptides, or gas).
The Wnt signaling pathways are a group of signal transduction pathways which begin with proteins that pass signals into a cell through cell surface receptors. The name Wnt is a portmanteau created from the names Wingless and Int-1. Wnt signaling pathways use either nearby cell-cell communication (paracrine) or same-cell communication (autocrine). They are highly evolutionarily conserved in animals, which means they are similar across animal species from fruit flies to humans.
In cellular biology, paracrine signaling is a form of cell signaling, a type of cellular communication in which a cell produces a signal to induce changes in nearby cells, altering the behaviour of those cells. Signaling molecules known as paracrine factors diffuse over a relatively short distance (local action), as opposed to cell signaling by endocrine factors, hormones which travel considerably longer distances via the circulatory system; juxtacrine interactions; and autocrine signaling.
Activin-A is a Transforming Growth Factor-B (TGFB)-related cytokine that regulates various biological processes including cell proliferation and differentiation through autocrine, paracrine or endocrine signaling. Activin-A expression is upregulated in mul ...
The mechanisms underlying the multistep process of tumorigenesis can be distilled into a logical framework involving the acquisition of functional capabilities, the so-called hallmarks of cancer, which are collectively envisaged to be necessary for maligna ...
Notch signaling promotes T cell pathogenicity and graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation (allo-HCT) in mice, with a dominant role for the Delta-like Notch ligand DLL4. To assess whether Notch's effects are evol ...