Direct memory access (DMA) is a feature of computer systems that allows certain hardware subsystems to access main system memory independently of the central processing unit (CPU).
Without DMA, when the CPU is using programmed input/output, it is typically fully occupied for the entire duration of the read or write operation, and is thus unavailable to perform other work. With DMA, the CPU first initiates the transfer, then it does other operations while the transfer is in progress, and it finally receives an interrupt from the DMA controller (DMAC) when the operation is done. This feature is useful at any time that the CPU cannot keep up with the rate of data transfer, or when the CPU needs to perform work while waiting for a relatively slow I/O data transfer. Many hardware systems use DMA, including disk drive controllers, graphics cards, network cards and sound cards. DMA is also used for intra-chip data transfer in some multi-core processors. Computers that have DMA channels can transfer data to and from devices with much less CPU overhead than computers without DMA channels. Similarly, a processing circuitry inside a multi-core processor can transfer data to and from its local memory without occupying its processor time, allowing computation and data transfer to proceed in parallel.
DMA can also be used for "memory to memory" copying or moving of data within memory. DMA can offload expensive memory operations, such as large copies or scatter-gather operations, from the CPU to a dedicated DMA engine. An implementation example is the I/O Acceleration Technology. DMA is of interest in network-on-chip and in-memory computing architectures.
Standard DMA, also called third-party DMA, uses a DMA controller. A DMA controller can generate memory addresses and initiate memory read or write cycles. It contains several hardware registers that can be written and read by the CPU. These include a memory address register, a byte count register, and one or more control registers.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
L'étudiant comprendra les architectures des systèmes embarqués microprogrammés, les architectures des microprocesseurs, hiérarchie de mémoire et les différents périphériques de Entrée/Sortie (E/S) inc
Multiprocessors are a core component in all types of computing infrastructure, from phones to datacenters. This course will build on the prerequisites of processor design and concurrency to introduce
Multiprocessors are now the defacto building blocks for all computer systems. This course will build upon the basic concepts offered in Computer Architecture I to cover the architecture and organizati
A system on a chip or system-on-chip (SoC ,ˈɛsoʊsiː; pl. SoCs ,ˈɛsoʊsiːz) is an integrated circuit that integrates most or all components of a computer or other electronic system. These components almost always include on-chip central processing unit (CPU), memory interfaces, input/output devices, input/output interfaces, and secondary storage interfaces, often alongside other components such as radio modems and a graphics processing unit (GPU) – all on a single substrate or microchip.
A multi-core processor is a microprocessor on a single integrated circuit with two or more separate processing units, called cores, each of which reads and executes program instructions. The instructions are ordinary CPU instructions (such as add, move data, and branch) but the single processor can run instructions on separate cores at the same time, increasing overall speed for programs that support multithreading or other parallel computing techniques.
ARM (stylised in lowercase as arm, formerly an acronym for Advanced RISC Machines and originally Acorn RISC Machine) is a family of reduced instruction set computer (RISC) instruction set architectures for computer processors, configured for various environments. Arm Ltd. develops the architectures and licenses them to other companies, who design their own products that implement one or more of those architectures, including system on a chip (SoC) and system on module (SOM) designs, that incorporate different components such as memory, interfaces, and radios.
Accessing input data is a critical operation in data analytics: i) slow data access significantly degrades performance, and ii) storing everything in the fastest medium, i.e., memory, incurs high operational and hardware costs. Further, while GPUs offer in ...
2023
Driven by the demand for real-time processing and the need to minimize latency in AI algorithms, edge computing has experienced remarkable progress. Decision-making AI applications stand out for their heavy reliance on data-centric operations, predominantl ...
Embedded memories occupy an increasingly dominant part of the area and power budgets of modern systems-on-chips (SoCs). Multi-ported embedded memories, commonly used by media SoCs and graphical processing units, occupy even more area and consume higher pow ...