A Reuleaux triangle ʁœlo is a curved triangle with constant width, the simplest and best known curve of constant width other than the circle. It is formed from the intersection of three circular disks, each having its center on the boundary of the other two. Constant width means that the separation of every two parallel supporting lines is the same, independent of their orientation. Because its width is constant, the Reuleaux triangle is one answer to the question "Other than a circle, what shape can a manhole cover be made so that it cannot fall down through the hole?"
Reuleaux triangles have also been called spherical triangles, but that term more properly refers to triangles on the curved surface of a sphere.
They are named after Franz Reuleaux, a 19th-century German engineer who pioneered the study of machines for translating one type of motion into another, and who used Reuleaux triangles in his designs. However, these shapes were known before his time, for instance by the designers of Gothic church windows, by Leonardo da Vinci, who used it for a map projection, and by Leonhard Euler in his study of constant-width shapes. Other applications of the Reuleaux triangle include giving the shape to guitar picks, fire hydrant nuts, pencils, and drill bits for drilling filleted square holes, as well as in graphic design in the shapes of some signs and corporate logos.
Among constant-width shapes with a given width, the Reuleaux triangle has the minimum area and the sharpest (smallest) possible angle (120°) at its corners. By several numerical measures it is the farthest from being centrally symmetric. It provides the largest constant-width shape avoiding the points of an integer lattice, and is closely related to the shape of the quadrilateral maximizing the ratio of perimeter to diameter. It can perform a complete rotation within a square while at all times touching all four sides of the square, and has the smallest possible area of shapes with this property.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
Ce cours traite des 3 sujets suivants : la perspective, la géométrie descriptive, et une initiation à la géométrie projective.
Related lectures (33)
In geometry, a curve of constant width is a simple closed curve in the plane whose width (the distance between parallel supporting lines) is the same in all directions. The shape bounded by a curve of constant width is a body of constant width or an orbiform, the name given to these shapes by Leonhard Euler. Standard examples are the circle and the Reuleaux triangle. These curves can also be constructed using circular arcs centered at crossings of an arrangement of lines, as the involutes of certain curves, or by intersecting circles centered on a partial curve.
In convex geometry, a body of constant brightness is a three-dimensional convex set all of whose two-dimensional projections have equal area. A sphere is a body of constant brightness, but others exist. Bodies of constant brightness are a generalization of curves of constant width, but are not the same as another generalization, the surfaces of constant width. The name comes from interpreting the body as a shining body with isotropic luminance, then a photo (with focus at infinity) of the body taken from any angle would have the same total light energy hitting the photo.
In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles (90-degree angles, π/2 radian angles, or right angles). It can also be defined as a rectangle with two equal-length adjacent sides. It is the only regular polygon whose internal angle, central angle, and external angle are all equal (90°), and whose diagonals are all equal in length. A square with vertices ABCD would be denoted .
We study time and space equivariant wave maps from M×R→S2, where M is dieomorphic to a two dimensional sphere and admits an action of SO(2) by isometries. We assume that metric on M can be written as $dr^2+f^2(r)d\theta ...
2016
,
We present a setup that provides a partial UV-completion of the ghost inflation model up to a scale which can be almost as high as the Planck mass. This is achieved by coupling the inflaton to the Lorentz-violating sector described by the Einstein-aether t ...
Iop Publishing Ltd2014
, ,
In this work a quasi-analytical physical model has been developed for the prediction of the potential in SiNW devices with arbitrary polygonal cross section. The model is then extended to the transport direction; a method for the calculation of the natural ...