Concept

Implicit function theorem

Summary
In multivariable calculus, the implicit function theorem is a tool that allows relations to be converted to functions of several real variables. It does so by representing the relation as the graph of a function. There may not be a single function whose graph can represent the entire relation, but there may be such a function on a restriction of the domain of the relation. The implicit function theorem gives a sufficient condition to ensure that there is such a function. More precisely, given a system of m equations fi (x1, ..., xn, y1, ..., ym) = 0, i = 1, ..., m (often abbreviated into F(x, y) = 0), the theorem states that, under a mild condition on the partial derivatives (with respect to each yi ) at a point, the m variables yi are differentiable functions of the xj in some neighborhood of the point. As these functions can generally not be expressed in closed form, they are implicitly defined by the equations, and this motivated the name of the theorem. In other words, under a mild condition on the partial derivatives, the set of zeros of a system of equations is locally the graph of a function. Augustin-Louis Cauchy (1789–1857) is credited with the first rigorous form of the implicit function theorem. Ulisse Dini (1845–1918) generalized the real-variable version of the implicit function theorem to the context of functions of any number of real variables. If we define the function f(x, y) = x2 + y2, then the equation f(x, y) = 1 cuts out the unit circle as the level set {(x, y) f(x, y) = 1}. There is no way to represent the unit circle as the graph of a function of one variable y = g(x) because for each choice of x ∈ (−1, 1), there are two choices of y, namely . However, it is possible to represent part of the circle as the graph of a function of one variable. If we let for −1 ≤ x ≤ 1, then the graph of y = g1(x) provides the upper half of the circle. Similarly, if , then the graph of y = g2(x) gives the lower half of the circle.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (15)
MATH-106(a): Analysis II
Étudier les concepts fondamentaux d'analyse, et le calcul différentiel et intégral des fonctions réelles de plusieurs variables.
MATH-404: Functional analysis II
We introduce locally convex vector spaces. As an example we treat the space of test functions and the space of distributions. In the second part of the course, we discuss differential calculus in Bana
MATH-105(a): Advanced analysis II
Etudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles de plusieurs variables.
Show more
Related publications (25)