In the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from X to Y is often denoted with the notation .
In the more general setting of , a monomorphism (also called a monic morphism or a mono) is a left-cancellative morphism. That is, an arrow f : X → Y such that for all objects Z and all morphisms g1, g2: Z → X,
Monomorphisms are a categorical generalization of injective functions (also called "one-to-one functions"); in some categories the notions coincide, but monomorphisms are more general, as in the examples below.
In the setting of posets intersections are idempotent: the intersection of anything with itself is itself. Monomorphisms generalize this property to arbitrary categories. A morphism is a monomorphism if it is idempotent with respect to .
The categorical dual of a monomorphism is an epimorphism, that is, a monomorphism in a category C is an epimorphism in the Cop. Every is a monomorphism, and every is an epimorphism.
Left-invertible morphisms are necessarily monic: if l is a left inverse for f (meaning l is a morphism and ), then f is monic, as
A left-invertible morphism is called a or a section.
However, a monomorphism need not be left-invertible. For example, in the category Group of all groups and group homomorphisms among them, if H is a subgroup of G then the inclusion f : H → G is always a monomorphism; but f has a left inverse in the category if and only if H has a normal complement in G.
A morphism f : X → Y is monic if and only if the induced map f∗ : Hom(Z, X) → Hom(Z, Y), defined by f∗(h) = f ∘ h for all morphisms h : Z → X, is injective for all objects Z.
Every morphism in a whose underlying function is injective is a monomorphism; in other words, if morphisms are actually functions between sets, then any morphism which is a one-to-one function will necessarily be a monomorphism in the categorical sense. In the the converse also holds, so the monomorphisms are exactly the injective morphisms.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, particularly in , a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms are functions; in linear algebra, linear transformations; in group theory, group homomorphisms; in analysis and topology, continuous functions, and so on.
In mathematics, a function from a set X to a set Y assigns to each element of X exactly one element of Y. The set X is called the domain of the function and the set Y is called the codomain of the function. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a function of time. Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable (that is, they had a high degree of regularity).
In , an epimorphism (also called an epic morphism or, colloquially, an epi) is a morphism f : X → Y that is right-cancellative in the sense that, for all objects Z and all morphisms , Epimorphisms are categorical analogues of onto or surjective functions (and in the the concept corresponds exactly to the surjective functions), but they may not exactly coincide in all contexts; for example, the inclusion is a ring epimorphism. The of an epimorphism is a monomorphism (i.e. an epimorphism in a C is a monomorphism in the Cop).
The paper proposes a variant of sesqui-pushout rewriting (SqPO) that allows one to develop the theory of nested application conditions (NACs) for arbitrary rule spans; this is a considerable generalisation compared with existing results for NACs, which onl ...
A multifiltration is a functor indexed by Nr that maps any morphism to a monomorphism. The goal of this paper is to describe in an explicit and combinatorial way the natural Nr-graded R[x(1),...x(r)]-module structure on the homology of a multifiltration of ...
In this paper, we prove a strengthening of the generic vanishing result in characteristic p > 0 given in Hacon and Patakfalvi (Am J Math 138(4):963-998, 2016). As a consequence of this result, we show that irreducible Theta divisors are strongly F-regular ...