Publication

Reversible Sesqui-Pushout Rewriting, Graph Transformation

Sandro Stucki
2014
Conference paper
Abstract

The paper proposes a variant of sesqui-pushout rewriting (SqPO) that allows one to develop the theory of nested application conditions (NACs) for arbitrary rule spans; this is a considerable generalisation compared with existing results for NACs, which only hold for linear rules (w.r.t. a suitable class of monos). Besides this main contribution, namely an adapted shifting construction for NACs, the paper presents a uniform commutativity result for a revised notion of independence that applies to arbitrary rules; these theorems hold in any category with (enough) stable pushouts and a class of monos rendering it weak adhesive HLR. To illustrate results and concepts, we use simple graphs, i.e. the category of binary endorelations and relation preserving functions, as it is a paradigmatic example of a category with stable pushouts; moreover, using regular monos to give semantics to NACs, we can shift NACs over arbitrary rule spans.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.