Summary
In mathematics, the endomorphisms of an abelian group X form a ring. This ring is called the endomorphism ring of X, denoted by End(X); the set of all homomorphisms of X into itself. Addition of endomorphisms arises naturally in a pointwise manner and multiplication via endomorphism composition. Using these operations, the set of endomorphisms of an abelian group forms a (unital) ring, with the zero map as additive identity and the identity map as multiplicative identity. The functions involved are restricted to what is defined as a homomorphism in the context, which depends upon the of the object under consideration. The endomorphism ring consequently encodes several internal properties of the object. As the resulting object is often an algebra over some ring R, this may also be called the endomorphism algebra. An abelian group is the same thing as a module over the ring of integers, which is the initial object in the . In a similar fashion, if R is any commutative ring, the endomorphisms of an R-module form an algebra over R by the same axioms and derivation. In particular, if R is a field, its modules M are vector spaces and their endomorphism rings are algebras over the field R. Let (A, +) be an abelian group and we consider the group homomorphisms from A into A. Then addition of two such homomorphisms may be defined pointwise to produce another group homomorphism. Explicitly, given two such homomorphisms f and g, the sum of f and g is the homomorphism f + g : x ↦ f(x) + g(x). Under this operation End(A) is an abelian group. With the additional operation of composition of homomorphisms, End(A) is a ring with multiplicative identity. This composition is explicitly fg : x ↦ f(g(x)). The multiplicative identity is the identity homomorphism on A. If the set A does not form an abelian group, then the above construction is not necessarily additive, as then the sum of two homomorphisms need not be a homomorphism. This set of endomorphisms is a canonical example of a near-ring that is not a ring.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.