In mathematics, a Cauchy sequence, named after Augustin-Louis Cauchy, is a sequence whose elements become arbitrarily close to each other as the sequence progresses. More precisely, given any small positive distance, all but a finite number of elements of the sequence are less than that given distance from each other.
It is not sufficient for each term to become arbitrarily close to the term. For instance, in the sequence of square roots of natural numbers:
the consecutive terms become arbitrarily close to each other – their differences
tend to zero as the index n grows. However, with growing values of n, the terms become arbitrarily large. So, for any index n and distance d, there exists an index m big enough such that As a result, no matter how far one goes, the remaining terms of the sequence never get close to ; hence the sequence is not Cauchy.
The utility of Cauchy sequences lies in the fact that in a complete metric space (one where all such sequences are known to converge to a limit), the criterion for convergence depends only on the terms of the sequence itself, as opposed to the definition of convergence, which uses the limit value as well as the terms. This is often exploited in algorithms, both theoretical and applied, where an iterative process can be shown relatively easily to produce a Cauchy sequence, consisting of the iterates, thus fulfilling a logical condition, such as termination.
Generalizations of Cauchy sequences in more abstract uniform spaces exist in the form of Cauchy filters and Cauchy nets.
A sequence
of real numbers is called a Cauchy sequence if for every positive real number there is a positive integer N such that for all natural numbers
where the vertical bars denote the absolute value. In a similar way one can define Cauchy sequences of rational or complex numbers. Cauchy formulated such a condition by requiring to be infinitesimal for every pair of infinite m, n.
For any real number r, the sequence of truncated decimal expansions of r forms a Cauchy sequence.