En analyse mathématique, une suite de Cauchy est une suite de réels, de complexes, de points d'un espace métrique ou plus généralement d'un espace uniforme, dont les termes se rapprochent les uns des autres. Ces suites sont celles susceptibles de converger. Elles sont au centre de la définition de la complétude. Les suites de Cauchy portent le nom du mathématicien français Augustin Louis Cauchy. Cette notion se généralise, dans un espace uniforme, par celles de filtre de Cauchy et de suite généralisée de Cauchy. Une suite (r) de réels ou de complexes est dite de Cauchy, ou vérifie le critère de Cauchy, lorsque les termes de la suite se rapprochent uniformément les uns des autres en l'infini au sens où : Cette dernière condition se réécrit classiquement à l'aide de quantificateurs universels et existentiels : ou encore : L'uniformité dans la définition est importante : il ne suffit pas que la différence des termes consécutifs d'une suite tende vers 0 pour que cette suite soit de Cauchy. Par exemple, la suite (H) des sommes partielles de la série harmonique vérifie H – H = 1/n+1 → 0 mais (H) n'est pas de Cauchy ni même bornée, puisqu'elle tend vers +∞. Remarque: ce critère s'étend à R , en particulier à C ≅ R. Une suite dans un espace métrique (E, d) est dite de Cauchy si : ce qui équivaut à ou plus synthétiquement, si ou encore si le diamètre de l'ensemble des termes d'indices supérieur à n tend vers 0 quand n tend vers l'infini : Les suites de Cauchy de réels sont donc un cas particulier de cette définition, en prenant, comme distance sur R, la valeur absolue de la différence. Les inégalités autres que ε > 0 peuvent être prises indifféremment larges ou strictes. Intuitivement, les termes de la suite deviennent de plus en plus proches les uns des autres d'une certaine façon qui suggère que la suite doit avoir une limite dans l'espace. Les suites convergentes sont effectivement de Cauchy, mais la réciproque n'est pas vraie en toute généralité. Par exemple, certaines suites de Cauchy de rationnels convergent vers un irrationnel, donc convergent dans R mais pas dans Q.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (22)
MATH-101(g): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
MATH-201: Analysis III
Calcul différentiel et intégral. Eléments d'analyse complexe.
MATH-105(a): Advanced analysis II - vector analysis
Etudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles de plusieurs variables.
Afficher plus
Séances de cours associées (157)
Séquences de Cauchy et induction
Couvre les séquences de Cauchy, la convergence et l'induction dans l'analyse mathématique.
Simulacre d'examen : solutions à la question ouverte
Explore les solutions à une question ouverte d'un examen simulé, en se concentrant sur la convergence des séries et les propriétés des fonctions.
Cauchy-Folgen: Induction
Couvre les séquences de Cauchy, l'induction, les séquences récursives et la convergence en analyse mathématique.
Afficher plus
Publications associées (56)

Spatiotemporal energy‐density distribution of time‐reversed electromagnetic fields

Marcos Rubinstein, Farhad Rachidi-Haeri, Hamidreza Karami, Elias Per Joachim Le Boudec, Nicolas Mora Parra

Time reversal exploits the invariance of electromagnetic wave propagation in reciprocal and lossless media to localize radiating sources. Time-reversed measurements are back-propagated in a simulated domain and converge to the unknown source location. The ...
2024

Generative power of a protein language model trained on multiple sequence alignments

Anne-Florence Raphaëlle Bitbol, Damiano Sgarbossa, Umberto Lupo

Computational models starting from large ensembles of evolutionarily related protein sequences capture a representation of protein families and learn constraints associated to protein structure and function. They thus open the possibility for generating no ...
eLIFE SCIENCES PUBL LTD2023

Spatiotemporal energy-density distribution of time-reversed electromagnetic fields

Marcos Rubinstein, Farhad Rachidi-Haeri, Hamidreza Karami, Elias Per Joachim Le Boudec, Nicolas Mora Parra

Time reversal exploits the invariance of electromagnetic wave propagation in reciprocal and lossless media to localise radiating sources. Time-reversed measurements are back-propagated in a simulated domain and converge to the unknown source location. The ...
2023
Afficher plus
Concepts associés (18)
Nombre réel
En mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
Analyse (mathématiques)
L'analyse (du grec , délier, examiner en détail, résoudre) a pour point de départ la formulation rigoureuse du calcul infinitésimal. C'est la branche des mathématiques qui traite explicitement de la notion de limite, que ce soit la limite d'une suite ou la limite d'une fonction. Elle inclut également des notions comme la continuité, la dérivation et l'intégration. Ces notions sont étudiées dans le contexte des nombres réels ou des nombres complexes.
Espace complet
En mathématiques, un espace métrique complet est un espace métrique dans lequel toute suite de Cauchy converge. La propriété de complétude dépend de la distance. Il est donc important de toujours préciser la distance que l'on prend quand on parle d'espace complet. Intuitivement, un espace est complet s'il « n'a pas de trou », s'il « n'a aucun point manquant ». Par exemple, les nombres rationnels ne forment pas un espace complet, puisque n'y figure pas alors qu'il existe une suite de Cauchy de nombres rationnels ayant cette limite.
Afficher plus
MOOCs associés (9)
Analyse I
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
Analyse I (partie 1) : Prélude, notions de base, les nombres réels
Concepts de base de l'analyse réelle et introduction aux nombres réels.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.