A bandwidth-limited pulse (also known as Fourier-transform-limited pulse, or more commonly, transform-limited pulse) is a pulse of a wave that has the minimum possible duration for a given spectral bandwidth. Bandwidth-limited pulses have a constant phase across all frequencies making up the pulse. Optical pulses of this type can be generated by mode-locked lasers.
Any waveform can be disassembled into its spectral components by Fourier analysis or Fourier transformation. The length of a pulse thereby is determined by its complex spectral components, which include not just their relative intensities, but also the relative positions (spectral phase) of these spectral components. For different pulse shapes, the minimum duration-bandwidth product is different. The duration-bandwidth product is minimal for zero phase-modulation. For example, pulses have a minimum duration-bandwidth product of 0.315 while gaussian pulses have a minimum value of 0.441.
A bandwidth-limited pulse can only be kept together if the dispersion of the medium the wave is travelling through is zero; otherwise dispersion management is needed to revert the effects of unwanted spectral phase changes. For example, when an ultrashort pulse passes through a block of glass, the glass medium broadens the pulse due to group velocity dispersion.
Keeping pulses bandwidth-limited is necessary to compress information in time or to achieve high field densities, as with ultrashort pulses in modelocked lasers.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The physical principles of laser light materials interactions are introduced with a large number of industrial application examples. Materials processing lasers are developing further and further, the
Provide understanding of the optical properties of materials, principles of laser operation and properties of generated light. Comprehension of basics of interaction between laser light and materials
The physics of optical communication components and their applications to communication systems will be covered. The course is intended to present the operation principles of contemporary optical comm
In optics, an ultrashort pulse, also known as an ultrafast event, is an electromagnetic pulse whose time duration is of the order of a picosecond (10−12 second) or less. Such pulses have a broadband optical spectrum, and can be created by mode-locked oscillators. Amplification of ultrashort pulses almost always requires the technique of chirped pulse amplification, in order to avoid damage to the gain medium of the amplifier. They are characterized by a high peak intensity (or more correctly, irradiance) that usually leads to nonlinear interactions in various materials, including air.
Cell-sized giant unilamellar vesicles (GUVs) are an ideal tool for understanding lipid membrane structure and properties. Label-free spatiotemporal images of their membrane potential and structure would greatly aid the quantitative understanding of membran ...
AIP Publishing2023
Isolated attosecond pulses from an X-ray free-electron laser are in high demand for attosecond science, which enables the probing of electron dynamics by X-ray nonlinear spectroscopy and single-particle imaging.The aim of this thesis is to simulate attosec ...
Ultrashort laser pulses, i.e., pulses emitted shorter than a picosecond, can tailor material properties by introducing permanent modifications locally in three dimensions. Remarkably, under a certain exposure condition, these modifications are accompanied ...