Summary
Alanine (symbol Ala or A), or α-alanine, is an α-amino acid that is used in the biosynthesis of proteins. It contains an amine group and a carboxylic acid group, both attached to the central carbon atom which also carries a methyl group side chain. Consequently, its IUPAC systematic name is 2-aminopropanoic acid, and it is classified as a nonpolar, aliphatic α-amino acid. Under biological conditions, it exists in its zwitterionic form with its amine group protonated (as −NH3+) and its carboxyl group deprotonated (as −CO2−). It is non-essential to humans as it can be synthesised metabolically and does not need to be present in the diet. It is encoded by all codons starting with GC (GCU, GCC, GCA, and GCG). The L-isomer of alanine (left-handed) is the one that is incorporated into proteins. L-alanine is second only to leucine in rate of occurrence, accounting for 7.8% of the primary structure in a sample of 1,150 proteins. The right-handed form, D-alanine, occurs in polypeptides in some bacterial cell walls and in some peptide antibiotics, and occurs in the tissues of many crustaceans and molluscs as an osmolyte. Alanine was first synthesized in 1850 when Adolph Strecker combined acetaldehyde and ammonia with hydrogen cyanide. The amino acid was named Alanin in German, in reference to aldehyde, with the interfix -an- for ease of pronunciation, the German ending -in used in chemical compounds being analogous to English -ine. Alanine is an aliphatic amino acid, because the side-chain connected to the α-carbon atom is a methyl group (-CH3). Alanine is the simplest α-amino acid after glycine. The methyl side-chain of alanine is non-reactive and is therefore hardly ever directly involved in protein function. Alanine is a nonessential amino acid, meaning it can be manufactured by the human body, and does not need to be obtained through the diet. Alanine is found in a wide variety of foods, but is particularly concentrated in meats. Alanine can be synthesized from pyruvate and branched chain amino acids such as valine, leucine, and isoleucine.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (5)
CH-210: Biochemistry
Les constituants biochimiques de l'organisme, protéines, glucides, lipides, à la lumière de l'évolution des concepts et des progrès en biologie moléculaire et génétique, sont étudiés.
BIO-377: Physiology by systems
Le but est de connaitre et comprendre le fonctionnement des systèmes cardiovasculaire, urinaire, respiratoire, digestif, ainsi que du métabolisme de base et sa régulation afin de déveloper une réflect
CH-313: Chemical biology
Closely interfacing with bioengineering and medicine, this course provides foundational concepts in applying small-molecule chemical toolsets to probe the functions of living systems at the mechanisti
Show more
Related lectures (32)
Fermented Foods: Microbial Transformations and Health Benefits
Explores the microbial transformations and health benefits of fermented foods, emphasizing their potential as delivery vehicles for probiotics to underserved communities.
Integrated Supply Chain Management: Green Chemistry
Explores integrated supply chain management and green chemistry principles for resource efficiency and waste reduction.
Digestive System Physiology: Structure and Function
Explores the anatomy and function of the digestive system, emphasizing stomach glands, liver structure, and nutrient digestion.
Show more
Related publications (36)
Related concepts (22)
Glutamic acid
Glutamic acid (symbol Glu or E; the ionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a non-essential nutrient for humans, meaning that the human body can synthesize enough for its use. It is also the most abundant excitatory neurotransmitter in the vertebrate nervous system. It serves as the precursor for the synthesis of the inhibitory gamma-aminobutyric acid (GABA) in GABAergic neurons. Its molecular formula is C5H9NO4.
Urea cycle
The urea cycle (also known as the ornithine cycle) is a cycle of biochemical reactions that produces urea (NH2)2CO from ammonia (NH3). Animals that use this cycle, mainly amphibians and mammals, are called ureotelic. The urea cycle converts highly toxic ammonia to urea for excretion. This cycle was the first metabolic cycle to be discovered (Hans Krebs and Kurt Henseleit, 1932), five years before the discovery of the TCA cycle. This cycle was described in more detail later on by Ratner and Cohen.
Essential amino acid
An essential amino acid, or indispensable amino acid, is an amino acid that cannot be synthesized from scratch by the organism fast enough to supply its demand, and must therefore come from the diet. Of the 21 amino acids common to all life forms, the nine amino acids humans cannot synthesize are valine, isoleucine, leucine, methionine, phenylalanine, tryptophan, threonine, histidine, and lysine.
Show more
Related MOOCs (4)
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Show more