Summary
A quantum well is a potential well with only discrete energy values. The classic model used to demonstrate a quantum well is to confine particles, which were initially free to move in three dimensions, to two dimensions, by forcing them to occupy a planar region. The effects of quantum confinement take place when the quantum well thickness becomes comparable to the de Broglie wavelength of the carriers (generally electrons and holes), leading to energy levels called "energy subbands", i.e., the carriers can only have discrete energy values. A wide variety of electronic quantum well devices have been developed based on the theory of quantum well systems. These devices have found applications in lasers, photodetectors, modulators, and switches for example. Compared to conventional devices, quantum well devices are much faster and operate much more economically and are a point of incredible importance to the technological and telecommunication industries. These quantum well devices are currently replacing many, if not all, conventional electrical components in many electronic devices. The concept of quantum well was proposed in 1963 independently by Herbert Kroemer and by Zhores Alferov and R.F. Kazarinov. The semiconductor quantum well was developed in 1970 by Esaki and Tsu, who also invented synthetic superlattices. They suggested that a heterostructure made up of alternating thin layers of semiconductors with different band-gaps should exhibit interesting and useful properties. Since then, much effort and research has gone into studying the physics of quantum well systems as well as developing quantum well devices. The development of quantum well devices is greatly attributed to the advancements in crystal growth techniques. This is because quantum well devices require structures that are of high purity with few defects. Therefore, having great control over the growth of these heterostructures allows for the development of semiconductor devices that can have very fine-tuned properties.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.