In numerical analysis, Richardson extrapolation is a sequence acceleration method used to improve the rate of convergence of a sequence of estimates of some value . In essence, given the value of for several values of , we can estimate by extrapolating the estimates to . It is named after Lewis Fry Richardson, who introduced the technique in the early 20th century, though the idea was already known to Christiaan Huygens in his calculation of π. In the words of Birkhoff and Rota, "its usefulness for practical computations can hardly be overestimated."
Practical applications of Richardson extrapolation include Romberg integration, which applies Richardson extrapolation to the trapezoid rule, and the Bulirsch–Stoer algorithm for solving ordinary differential equations.
Let be an approximation of (exact value) that depends on a positive step size h with an error formula of the form
where the are unknown constants and the are known constants such that . Furthermore, represents the truncation error of the approximation such that Similarly, in the approximation is said to be an approximation.
Note that by simplifying with Big O notation, the following formulae are equivalent:
Richardson extrapolation is a process that finds a better approximation of by changing the error formula from to Therefore, by replacing with the truncation error has reduced from to
for the same step size . The general pattern occurs in which is a more accurate estimate than when . By this process, we have achieved a better approximation of by subtracting the largest term in the error which was . This process can be repeated to remove more error terms to get even better approximations.
Using the step sizes and for some constant , the two formulas for are:
To improve our approximation from to by removing the first error term, we multiply the second equation (2) by and subtract the first equation (1) to give usThis multiplication and subtraction was performed because is an approximation of .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a sequence transformation is an operator acting on a given space of sequences (a sequence space). Sequence transformations include linear mappings such as convolution with another sequence, and resummation of a sequence and, more generally, are commonly used for series acceleration, that is, for improving the rate of convergence of a slowly convergent sequence or series. Sequence transformations are also commonly used to compute the antilimit of a divergent series numerically, and are used in conjunction with extrapolation methods.
In mathematics, series acceleration is one of a collection of sequence transformations for improving the rate of convergence of a series. Techniques for series acceleration are often applied in numerical analysis, where they are used to improve the speed of numerical integration. Series acceleration techniques may also be used, for example, to obtain a variety of identities on special functions. Thus, the Euler transform applied to the hypergeometric series gives some of the classic, well-known hypergeometric series identities.
In numerical analysis, the Shanks transformation is a non-linear series acceleration method to increase the rate of convergence of a sequence. This method is named after Daniel Shanks, who rediscovered this sequence transformation in 1955. It was first derived and published by R. Schmidt in 1941. For a sequence the series is to be determined. First, the partial sum is defined as: and forms a new sequence .
L'objectif de ce cours est d'étudier les différentes manifestations des mondes totalitaires dans la fiction. Plus précisément, nous regarderons comment les écrivains racontent l'aliénation de l'homme
Digital ENAC aims to provide students with the ability to apply the principles of coding to the practical life of designers and engineers. We will not focus on a specific coding language, but will ext
This course introduces students to modern computational and mathematical techniques for solving problems in chemistry and chemical engineering. The use of introduced numerical methods will be demonstr
In this thesis, we conduct a comprehensive investigation into structural instabilities of both elastic and magneto-elastic beams and shells, resulting in a creative proposal to design a programmable braille reader. Methodologically, we combine numerical si ...
EPFL2024
We analyze and implement the kernel ridge regression (KR) method developed in Filipovic et al. (Stripping the discount curve-a robust machine learning approach. Swiss Finance Institute Research Paper No. 22-24. SSRN. https://ssrn.com/abstract=4058150, 2022 ...
Second-order Moller-Plesset perturbation theory (MP2) is the most expedient wave function-based method for considering electron correlation in quantum chemical calculations and, as such, provides a cost-effective framework to assess the effects of basis se ...