Summary
In computer architecture, a bus (shortened form of the Latin omnibus, and historically also called data highway or databus) is a communication system that transfers data between components inside a computer, or between computers. This expression covers all related hardware components (wire, optical fiber, etc.) and software, including communication protocols. Early computer buses were parallel electrical wires with multiple hardware connections, but the term is now used for any physical arrangement that provides the same logical function as a parallel electrical busbar. Modern computer buses can use both parallel and bit serial connections, and can be wired in either a multidrop (electrical parallel) or daisy chain topology, or connected by switched hubs, as in the case of Universal Serial Bus (USB). Computer systems generally consist of three main parts: The central processing unit (CPU) that processes data, The memory that holds the programs and data to be processed, and I/O (input/output) devices as peripherals that communicate with the outside world. An early computer might contain a hand-wired CPU of vacuum tubes, a magnetic drum for main memory, and a punch tape and printer for reading and writing data respectively. A modern system might have a multi-core CPU, DDR4 SDRAM for memory, a solid-state drive for secondary storage, a graphics card and LCD as a display system, a mouse and keyboard for interaction, and a Wi-Fi connection for networking. In both examples, computer buses of one form or another move data between all of these devices. In most traditional computer architectures, the CPU and main memory tend to be tightly coupled. A microprocessor conventionally is a single chip which has a number of electrical connections on its pins that can be used to select an "address" in the main memory and another set of pins to read and write the data stored at that location. In most cases, the CPU and memory share signalling characteristics and operate in synchrony.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (71)

General and Unified Model of the Power Flow Problem in Multiterminal AC/DC Networks

Mario Paolone, Willem Lambrichts

This paper proposes a generic and unified model of the power flow (PF) problem for multiterminal hybrid AC/DC networks. The proposed model is an extension of the standard AC-PF. The DC network is treated as an AC one and, in addition to the Slack, PV and P ...
2024

Resource Sharing in Dataflow Circuits

Paolo Ienne, Andrea Guerrieri, Lana Josipovic, Axel Marmet

To achieve resource-efficient hardware designs, high-level synthesis (HLS) tools share (i.e., time-multiplex) functional units among operations of the same type. This optimization is typically performed in conjunction with operation scheduling to ensure th ...
New York2023

Uncooperative Rendezvous in Space: Design of an Electronic Architecture for High Performance Avionic with Multi Sensor Input and Intensive Data Rate.

Michaël Yannick Juillard

Active Debris Removal missions consist of sending a satellite in space and removing one or more debris from their current orbit. A key challenge is to obtain information about the uncooperative target. By gathering the velocity, position, and rotation of t ...
EPFL2022
Show more