The Akaike information criterion (AIC) is an estimator of prediction error and thereby relative quality of statistical models for a given set of data. Given a collection of models for the data, AIC estimates the quality of each model, relative to each of the other models. Thus, AIC provides a means for model selection.
AIC is founded on information theory. When a statistical model is used to represent the process that generated the data, the representation will almost never be exact; so some information will be lost by using the model to represent the process. AIC estimates the relative amount of information lost by a given model: the less information a model loses, the higher the quality of that model.
In estimating the amount of information lost by a model, AIC deals with the trade-off between the goodness of fit of the model and the simplicity of the model. In other words, AIC deals with both the risk of overfitting and the risk of underfitting.
The Akaike information criterion is named after the Japanese statistician Hirotsugu Akaike, who formulated it. It now forms the basis of a paradigm for the foundations of statistics and is also widely used for statistical inference.
Suppose that we have a statistical model of some data. Let k be the number of estimated parameters in the model. Let be the maximized value of the likelihood function for the model. Then the AIC value of the model is the following.
Given a set of candidate models for the data, the preferred model is the one with the minimum AIC value. Thus, AIC rewards goodness of fit (as assessed by the likelihood function), but it also includes a penalty that is an increasing function of the number of estimated parameters. The penalty discourages overfitting, which is desired because increasing the number of parameters in the model almost always improves the goodness of the fit.
AIC is founded in information theory. Suppose that the data is generated by some unknown process f. We consider two candidate models to represent f: g1 and g2.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Statistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops
This course provides the students with 1) a set of theoretical concepts to understand the machine learning approach; and 2) a subset of the tools to use this approach for problems arising in mechanica
Model selection is the task of selecting a model from among various candidates on the basis of performance criterion to choose the best one. In the context of learning, this may be the selection of a statistical model from a set of candidate models, given data. In the simplest cases, a pre-existing set of data is considered. However, the task can also involve the design of experiments such that the data collected is well-suited to the problem of model selection.
In statistics, deviance is a goodness-of-fit statistic for a statistical model; it is often used for statistical hypothesis testing. It is a generalization of the idea of using the sum of squares of residuals (SSR) in ordinary least squares to cases where model-fitting is achieved by maximum likelihood. It plays an important role in exponential dispersion models and generalized linear models. Deviance can be related to Kullback-Leibler divergence.
In statistics, the likelihood-ratio test assesses the goodness of fit of two competing statistical models, specifically one found by maximization over the entire parameter space and another found after imposing some constraint, based on the ratio of their likelihoods. If the constraint (i.e., the null hypothesis) is supported by the observed data, the two likelihoods should not differ by more than sampling error. Thus the likelihood-ratio test tests whether this ratio is significantly different from one, or equivalently whether its natural logarithm is significantly different from zero.
The Obukhov-Corrsin theory of scalar turbulence [21, 54] advances quantitative predictions on passive-scalar advection in a turbulent regime and can be regarded as the analogue for passive scalars of Kolmogorov's K41 theory of fully developed turbulence [4 ...
SporTran is a Python utility designed to estimate generic transport coefficients in extended systems, based on the Green-Kubo theory of linear response and the recently introduced cepstral analysis of the current time series generated by molecular dynamics ...
The electron self-interaction is a long-standing problem in density functional theory and is particularly critical in the description of polarons. Polarons are quasiparticles involving charge localization coupled with self-induced lattice distortions. Sinc ...