Summary
In quantum physics, a bound state is a quantum state of a particle subject to a potential such that the particle has a tendency to remain localized in one or more regions of space. The potential may be external or it may be the result of the presence of another particle; in the latter case, one can equivalently define a bound state as a state representing two or more particles whose interaction energy exceeds the total energy of each separate particle. One consequence is that, given a potential vanishing at infinity, negative-energy states must be bound. In general, the energy spectrum of the set of bound states is discrete, unlike free particles, which have a continuous spectrum. Although not bound states in the strict sense, metastable states with a net positive interaction energy, but long decay time, are often considered unstable bound states as well and are called "quasi-bound states". Examples include certain radionuclides and electrets. In relativistic quantum field theory, a stable bound state of n particles with masses corresponds to a pole in the S-matrix with a center-of-mass energy less than . An unstable bound state shows up as a pole with a complex center-of-mass energy. A proton and an electron can move separately; when they do, the total center-of-mass energy is positive, and such a pair of particles can be described as an ionized atom. Once the electron starts to "orbit" the proton, the energy becomes negative, and a bound state – namely the hydrogen atom – is formed. Only the lowest-energy bound state, the ground state, is stable. Other excited states are unstable and will decay into stable (but not other unstable) bound states with less energy by emitting a photon. A positronium "atom" is an unstable bound state of an electron and a positron. It decays into photons. Any state in the quantum harmonic oscillator is bound, but has positive energy. Note that , so the below does not apply. A nucleus is a bound state of protons and neutrons (nucleons).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.