**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Perturbation theory (quantum mechanics)

Summary

In quantum mechanics, perturbation theory is a set of approximation schemes directly related to mathematical perturbation for describing a complicated quantum system in terms of a simpler one. The idea is to start with a simple system for which a mathematical solution is known, and add an additional "perturbing" Hamiltonian representing a weak disturbance to the system. If the disturbance is not too large, the various physical quantities associated with the perturbed system (e.g. its energy levels and eigenstates) can be expressed as "corrections" to those of the simple system. These corrections, being small compared to the size of the quantities themselves, can be calculated using approximate methods such as asymptotic series. The complicated system can therefore be studied based on knowledge of the simpler one. In effect, it is describing a complicated unsolved system using a simple, solvable system.
Approximate Hamiltonians
Perturbation theory is an important tool for

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related publications (100)

Loading

Loading

Loading

Related people (50)

This thesis studies apertureless Scanning Near Field Optical Microscopy, a technique that uses the apex of a very sharp tip to obtain local optical information with lateral resolution much beyond the diffraction limit. Both theoretical and experimental results are discussed. The theoretical work is a significant advance towards the quantitative convergence of experiments and theoretical predictions, and should be useful in aiding the interpretation of measured images. Extended tips and substrates are used, and the detector is also carefully modeled. A static tip in vacuum serves to study the influence of the tip and illumination geometry on the far fields and on the near fields in the proximity of the tip apex, the volume used to probe the sample. Including a gold substrate and the commonly used demodulation scheme allows to study the discrimination of the components carrying the local information. A very good discrimination is verified for silicon tips and small oscillation amplitudes, as far as the tip interacts closely with the substrate and the oscillation remains highly sinusoidal. The imaging process is studied by including patterned substrates. The obtained signal is mostly sensitive to a few nanometers of depth into the sample, and the influence of the scanning conditions on the level of signal, background suppression and lateral resolution is characterized. Further, a closer look into the behavior of the extended physical detector reveals the influence of the spatial inhomogeneities of the scattered fields and, for interferometric measurements, the large significance of the optical phase. Experimentally, different techniques are first described that can facilitate images with clear local information. A cross polarization scheme is introduced which is very useful for non-perturbative measurements. It is applied to the mapping of the the field distribution surrounding plasmonic structures, for both the phase and the amplitude. Beyond dipolar resonances, I also study coupled dipoles and quadrupole field distributions. When imaging artifacts are avoided, the obtained images closely resemble theoretical expectations.

Related concepts (75)

Quantum field theory

In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to cons

Photon

A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic

Quantum mechanics

Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quan

Related courses (72)

PHYS-314: Quantum physics II

L'objectif de ce cours est de familiariser l'étudiant avec les concepts, les méthodes et les conséquences de la physique quantique. En particulier, le moment cinétique, la théorie de perturbation, les systèmes à plusieurs particules, les symétries, et les corrélations quantique seront traité

PHYS-432: Quantum field theory II

The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.

PHYS-426: Quantum physics IV

Introduction to the path integral formulation of quantum mechanics. Derivation of the perturbation expansion of Green's functions in terms of Feynman diagrams. Several applications will be presented, including non-perturbative effects, such as tunneling and instantons.

Related lectures (161)

Related units (36)

The goal of response theory, in each of its many statistical mechanical formulations, is to predict the perturbed response of a system from the knowledge of the unperturbed state and of the applied perturbation. A new recent angle on the problem focuses on providing a method to perform predictions of the change in one observable of the system using the change in a second observable as a surrogate for the actual forcing. Such a viewpoint tries to address the very relevant problem of causal links within complex system when only incomplete information is available. We present here a method for quantifying and ranking the predictive ability of observables and use it to investigate the response of a paradigmatic spatially extended system, the Lorenz '96 model. We perturb locally the system and we then study to what extent a given local observable can predict the behaviour of a separate local observable. We show that this approach can reveal insights on the way a signal propagates inside the system. We also show that the procedure becomes more efficient if one considers multiple acting forcings and, correspondingly, multiple observables as predictors of the observable of interest.

Most European countries are committed to an energy transition which consists in the substitution of conventional CO2 emitting energy sources by new renewable energy sources (RES), in particular wind and solar power. As opposed to conventional energy sources, new RES are distributed, non-dispatchable, fluctuating and inertialess and have negligible marginal costs. In this thesis, we investigate the impact of the energy transition on the electricity sector in Europe.
In the first part of this thesis, we investigate the future electricity production and prices in Europe. We develop a dispatch algorithm on an aggregated model of the pan-European power grid with which we study the future European productions. We show that, as the penetration of new RES increases, the transmission grids are more strongly used and that more flexibility is required from conventional generators. The existing infrastructures seem to able to absorb, through increased international power exchanges and usage of the existing pumped-storage hydroelectricity, the variations of new RES productions even for high penetrations. Then we investigate the effects of new RES on electricity prices. We explain why, due to their negligible marginal cost and their lack of dispatchability, they tend to drag electricity prices down and can be considered as a reduction of the load in the electricity pricing. In particular, photovoltaics decreases the volatility of electricity prices. We show that, in most European countries, the day-ahead electricity price is strongly correlated with the residual load, which is obtained by subtracting the non-dispatchable productions, in particular those of the new RES, from the load. From this observation, we build an effective price model based solely on the residual load with which the revenues of different electricity producers are evaluated.
The second part of this thesis deals with disturbances in large transmission grids. The substitution of conventional generators by inertialess RES reduces the amount of inertia connected to power systems which might affect their reliability. To examine the propagation of disturbances in large transmission grids, we develop a dynamical model of the continental European transmission grid. We observe that the magnitude of the disturbance following a power loss depends on the fault location. We show that when inertia and primary control are uniformly distributed, the faults exciting the slowest eigenmodes of the network Laplacian are followed by the strongest disturbances. Reducing inertia on those eigenmodes, which are mostly located in the periphery of the grid, affects more its resilience than when the reduction occurs in its center. Finally, we use perturbation theory to derive algorithms for optimal placement of inertia and primary control when some mild inhomogeneities are present in their distributions. We show that,when the vulnerability of the whole grid is taken into account, a uniform distribution of inertia is optimal and the primary control is best placed in the periphery of the grid.