Summary
In projective geometry, Pascal's theorem (also known as the hexagrammum mysticum theorem, Latin for mystical hexagram) states that if six arbitrary points are chosen on a conic (which may be an ellipse, parabola or hyperbola in an appropriate affine plane) and joined by line segments in any order to form a hexagon, then the three pairs of opposite sides of the hexagon (extended if necessary) meet at three points which lie on a straight line, called the Pascal line of the hexagon. It is named after Blaise Pascal. The theorem is also valid in the Euclidean plane, but the statement needs to be adjusted to deal with the special cases when opposite sides are parallel. This theorem is a generalization of Pappus's (hexagon) theorem, which is the special case of a degenerate conic of two lines with three points on each line. The most natural setting for Pascal's theorem is in a projective plane since any two lines meet and no exceptions need to be made for parallel lines. However, the theorem remains valid in the Euclidean plane, with the correct interpretation of what happens when some opposite sides of the hexagon are parallel. If exactly one pair of opposite sides of the hexagon are parallel, then the conclusion of the theorem is that the "Pascal line" determined by the two points of intersection is parallel to the parallel sides of the hexagon. If two pairs of opposite sides are parallel, then all three pairs of opposite sides form pairs of parallel lines and there is no Pascal line in the Euclidean plane (in this case, the line at infinity of the extended Euclidean plane is the Pascal line of the hexagon). Pascal's theorem is the polar reciprocal and projective dual of Brianchon's theorem. It was formulated by Blaise Pascal in a note written in 1639 when he was 16 years old and published the following year as a broadside titled "Essay pour les coniques. Par B. P." Pascal's theorem is a special case of the Cayley–Bacharach theorem.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.