Transduction is the process by which foreign DNA is introduced into a cell by a virus or viral vector. An example is the viral transfer of DNA from one bacterium to another and hence an example of horizontal gene transfer. Transduction does not require physical contact between the cell donating the DNA and the cell receiving the DNA (which occurs in conjugation), and it is DNase resistant (transformation is susceptible to DNase). Transduction is a common tool used by molecular biologists to stably introduce a foreign gene into a host cell's genome (both bacterial and mammalian cells).
Transduction was discovered in Salmonella by Norton Zinder and Joshua Lederberg at the University of Wisconsin–Madison in 1952.
Transduction happens through either the lytic cycle or the lysogenic cycle.
When bacteriophages (viruses that infect bacteria) that are lytic infect bacterial cells, they harness the replicational, transcriptional, and translation machinery of the host bacterial cell to make new viral particles (virions). The new phage particles are then released by lysis of the host. In the lysogenic cycle, the phage chromosome is integrated as a prophage into the bacterial chromosome, where it can stay dormant for extended periods of time. If the prophage is induced (by UV light for example), the phage genome is excised from the bacterial chromosome and initiates the lytic cycle, which culminates in lysis of the cell and the release of phage particles. Generalized transduction (see below) occurs in both cycles during the lytic stage, while specialized transduction (see below) occurs when a prophage is excised in the lysogenic cycle.
The packaging of bacteriophage DNA into phage capsids has low fidelity. Small pieces of bacterial DNA may be packaged into the bacteriophage particles. There are two ways that this can lead to transduction.
Generalized transduction occurs when random pieces of bacterial DNA are packaged into a phage. It happens when a phage is in the lytic stage, at the moment that the viral DNA is packaged into phage heads.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Bacteria (bækˈtɪəriə; : bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among the first life forms to appear on Earth, and are present in most of its habitats. Bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of Earth's crust. Bacteria play a vital role in many stages of the nutrient cycle by recycling nutrients and the fixation of nitrogen from the atmosphere.
A prokaryote (pɹoʊˈkærioʊt,_-ət) is a single-celled organism that lacks a nucleus and other membrane-bound organelles. The word prokaryote comes from the Greek πρό (, 'before') and κάρυον (, 'nut' or 'kernel'). In the two-empire system arising from the work of Édouard Chatton, prokaryotes were classified within the empire Prokaryota. But in the three-domain system, based upon molecular analysis, prokaryotes are divided into two domains: Bacteria (formerly Eubacteria) and Archaea (formerly Archaebacteria).
Transfection is the process of deliberately introducing naked or purified nucleic acids into eukaryotic cells. It may also refer to other methods and cell types, although other terms are often preferred: "transformation" is typically used to describe non-viral DNA transfer in bacteria and non-animal eukaryotic cells, including plant cells. In animal cells, transfection is the preferred term as transformation is also used to refer to progression to a cancerous state (carcinogenesis) in these cells.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative motor disorder, which results in death within a few years of diagnosis. While the cause of most cases of ALS is unknown, 10% of cases are familial (fALS), and associated with mutations in one of ov ...
The elegant geometry of viruses has inspired bio-engineers to synthetically explore the self-assembly of polyhedral capsids employed to protect new cargo or change an enzymatic microenvironment. Recently, Yang and co-workers used DNA nanotechnology to revi ...
Synthetic biology aims to engineer cells as miniature biological devices to sense, process, and respond to exogenous stimuli. Protein switches are designed to sense and respond to various molecular queues in a fast and specific manner, which fits the requi ...