Concept

Hécatonicosachore

In geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {5,3,3}. It is also called a C120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, hecatonicosachoron, dodecacontachoron and hecatonicosahedroid. The boundary of the 120-cell is composed of 120 dodecahedral cells with 4 meeting at each vertex. Together they form 720 pentagonal faces, 1200 edges, and 600 vertices. It is the 4-dimensional analogue of the regular dodecahedron, since just as a dodecahedron has 12 pentagonal facets, with 3 around each vertex, the dodecaplex has 120 dodecahedral facets, with 3 around each edge. Its dual polytope is the 600-cell. The 120-cell incorporates the geometries of every convex regular polytope in the first four dimensions (except the polygons {7} and above). As the sixth and largest regular convex 4-polytope, it contains inscribed instances of its four predecessors (recursively). It also contains 120 inscribed instances of the first in the sequence, the 5-cell, which is not found in any of the others. The 120-cell is a four-dimensional Swiss Army knife: it contains one of everything. It is daunting but instructive to study the 120-cell, because it contains examples of every relationship among all the convex regular polytopes found in the first four dimensions. Conversely, it can only be understood by first understanding each of its predecessors, and the sequence of increasingly complex symmetries they exhibit. That is why Stillwell titled his paper on the 4-polytopes and the history of mathematics of more than 3 dimensions The Story of the 120-cell. Natural Cartesian coordinates for a 4-polytope centered at the origin of 4-space occur in different frames of reference, depending on the long radius (center-to-vertex) chosen. The 120-cell with long radius = 2 ≈ 2.828 has edge length 4−2φ = 3− ≈ 0.764. In this frame of reference, its 600 vertex coordinates are the {permutations} and of the following: where φ (also called τ) is the golden ratio, 1 + /2 ≈ 1.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Personnes associées (1)
Concepts associés (28)
Regular 4-polytope
In mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions. There are six convex and ten star regular 4-polytopes, giving a total of sixteen. The convex regular 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. He discovered that there are precisely six such figures.
Hexacosichore
En géométrie, l'hexacosichore ou « 600-cellules » est le 4-polytope régulier convexe qui a comme symbole de Schläfli {3, 3, 5}. Il est composé de 600 cellules tétraédriques dont 20 qui se rencontrent à chaque sommet. Ensemble, ils forment triangulaires, 720 arêtes et 120 sommets. Les arêtes forment 72 décagones réguliers plans. Chaque sommet du 600-cellules est le sommet de six de ces décagones.
Hexadécachore
L'hexadécachore est, en géométrie, un 4-polytope régulier convexe, c'est-à-dire un polytope à 4 dimensions à la fois régulier et convexe. Il est constitué de 16 cellules tétraédriques. L'hexadécachore est l'hyperoctaèdre de dimension 4. Son dual est le tesseract (ou hypercube). Il pave l'espace euclidien à quatre dimensions.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.