Concept

Hécatonicosachore

Résumé
In geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {5,3,3}. It is also called a C120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, hecatonicosachoron, dodecacontachoron and hecatonicosahedroid. The boundary of the 120-cell is composed of 120 dodecahedral cells with 4 meeting at each vertex. Together they form 720 pentagonal faces, 1200 edges, and 600 vertices. It is the 4-dimensional analogue of the regular dodecahedron, since just as a dodecahedron has 12 pentagonal facets, with 3 around each vertex, the dodecaplex has 120 dodecahedral facets, with 3 around each edge. Its dual polytope is the 600-cell. The 120-cell incorporates the geometries of every convex regular polytope in the first four dimensions (except the polygons {7} and above). As the sixth and largest regular convex 4-polytope, it contains inscribed instances of its four predecessors (recursively). It also contains 120 inscribed instances of the first in the sequence, the 5-cell, which is not found in any of the others. The 120-cell is a four-dimensional Swiss Army knife: it contains one of everything. It is daunting but instructive to study the 120-cell, because it contains examples of every relationship among all the convex regular polytopes found in the first four dimensions. Conversely, it can only be understood by first understanding each of its predecessors, and the sequence of increasingly complex symmetries they exhibit. That is why Stillwell titled his paper on the 4-polytopes and the history of mathematics of more than 3 dimensions The Story of the 120-cell. Natural Cartesian coordinates for a 4-polytope centered at the origin of 4-space occur in different frames of reference, depending on the long radius (center-to-vertex) chosen. The 120-cell with long radius = 2 ≈ 2.828 has edge length 4−2φ = 3− ≈ 0.764. In this frame of reference, its 600 vertex coordinates are the {permutations} and of the following: where φ (also called τ) is the golden ratio, 1 + /2 ≈ 1.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.