In geometry, a facet is a feature of a polyhedron, polytope, or related geometric structure, generally of dimension one less than the structure itself. More specifically:
In three-dimensional geometry, a facet of a polyhedron is any polygon whose corners are vertices of the polyhedron, and is not a face. To facet a polyhedron is to find and join such facets to form the faces of a new polyhedron; this is the reciprocal process to stellation and may also be applied to higher-dimensional polytopes.
In polyhedral combinatorics and in the general theory of polytopes, a face that has dimension n − 1 (an (n − 1)-face or hyperface) is also called a facet.
A facet of a simplicial complex is a maximal simplex, that is a simplex that is not a face of another simplex of the complex. For (boundary complexes of) simplicial polytopes this coincides with the meaning from polyhedral combinatorics.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In geometry, an edge is a particular type of line segment joining two vertices in a polygon, polyhedron, or higher-dimensional polytope. In a polygon, an edge is a line segment on the boundary, and is often called a polygon side. In a polyhedron or more generally a polytope, an edge is a line segment where two faces (or polyhedron sides) meet. A segment joining two vertices while passing through the interior or exterior is not an edge but instead is called a diagonal.
In geometry, a simplicial polytope is a polytope whose facets are all simplices. For example, a simplicial polyhedron in three dimensions contains only triangular faces and corresponds via Steinitz's theorem to a maximal planar graph. They are topologically dual to simple polytopes. Polytopes which are both simple and simplicial are either simplices or two-dimensional polygons. Simplicial polyhedra include: Bipyramids Gyroelongated dipyramids Deltahedra (equilateral triangles) Platonic tetrahedron, octahed
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the -dimensional Euclidean space . Most texts use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others (including this article) allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue.
This contribution explores the combined capabilities of reduced basis methods and IsoGeometric Analysis (IGA) in the context of parameterized partial differential equations. The introduction of IGA enables a unified simulation framework based on a single g ...
Superionic phases of bulk anhydrous salts based on large cluster-like polyhedral (carba)borate anions are generally stable only well above room temperature, rendering them unsuitable as solid-state electrolytes in energy-storage devices that typically oper ...
AMER CHEMICAL SOC2021
, ,
The growth modulation of metal nanocrystals (NCs) by Ostwald ripening (OR) involves control of the relocation of matter by diffusional mass transfer from the dissolution of small nanocrystals (SNCs) towards large nanocrystals whose surface energy is lower. ...