In calculus, a derivative test uses the derivatives of a function to locate the critical points of a function and determine whether each point is a local maximum, a local minimum, or a saddle point. Derivative tests can also give information about the concavity of a function.
The usefulness of derivatives to find extrema is proved mathematically by Fermat's theorem of stationary points.
The first-derivative test examines a function's monotonic properties (where the function is increasing or decreasing), focusing on a particular point in its domain. If the function "switches" from increasing to decreasing at the point, then the function will achieve a highest value at that point. Similarly, if the function "switches" from decreasing to increasing at the point, then it will achieve a least value at that point. If the function fails to "switch" and remains increasing or remains decreasing, then no highest or least value is achieved.
One can examine a function's monotonicity without calculus. However, calculus is usually helpful because there are sufficient conditions that guarantee the monotonicity properties above, and these conditions apply to the vast majority of functions one would encounter.
Stated precisely, suppose that f is a real-valued function defined on some open interval containing the point x and suppose further that f is continuous at x.
If there exists a positive number r > 0 such that f is weakly increasing on and weakly decreasing on , then f has a local maximum at x.
If there exists a positive number r > 0 such that f is strictly increasing on and strictly increasing on , then f is strictly increasing on and does not have a local maximum or minimum at x.
Note that in the first case, f is not required to be strictly increasing or strictly decreasing to the left or right of x, while in the last case, f is required to be strictly increasing or strictly decreasing. The reason is that in the definition of local maximum and minimum, the inequality is not required to be strict: e.g.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, particularly in calculus, a stationary point of a differentiable function of one variable is a point on the graph of the function where the function's derivative is zero. Informally, it is a point where the function "stops" increasing or decreasing (hence the name). For a differentiable function of several real variables, a stationary point is a point on the surface of the graph where all its partial derivatives are zero (equivalently, the gradient is zero).
In mathematical analysis, the maximum and minimum of a function are, respectively, the largest and smallest value taken by the function. Known generically as extremum, they may be defined either within a given range (the local or relative extrema) or on the entire domain (the global or absolute extrema) of a function. Pierre de Fermat was one of the first mathematicians to propose a general technique, adequality, for finding the maxima and minima of functions.
Critical point is a wide term used in many branches of mathematics. When dealing with functions of a real variable, a critical point is a point in the domain of the function where the function is either not differentiable or the derivative is equal to zero. When dealing with complex variables, a critical point is, similarly, a point in the function's domain where it is either not holomorphic or the derivative is equal to zero. Likewise, for a function of several real variables, a critical point is a value in its domain where the gradient is undefined or is equal to zero.
In this note, we prove that if a subharmonic function Delta u >= 0 has pure second derivatives partial derivative(ii)u that are signed measures, then their negative part (partial derivative(ii)u)- belongs to L-1 (in particular, it is not singular). We then ...
Providence2023
, ,
Hydropower plants play a crucial role in the power system facing ambitious renewable energy targets. Due to their inherent controllability, they are well suited to provide flexibility to the grid. However, an increased flexibility provision leads to a prol ...
2023
Non-convex constrained optimization problems have become a powerful framework for modeling a wide range of machine learning problems, with applications in k-means clustering, large- scale semidefinite programs (SDPs), and various other tasks. As the perfor ...