Summary
In the mathematical area of order theory, a completely distributive lattice is a complete lattice in which arbitrary joins distribute over arbitrary meets. Formally, a complete lattice L is said to be completely distributive if, for any doubly indexed family {xj,k | j in J, k in Kj} of L, we have where F is the set of choice functions f choosing for each index j of J some index f(j) in Kj. Complete distributivity is a self-dual property, i.e. dualizing the above statement yields the same class of complete lattices. Without the axiom of choice, no complete lattice with more than one element can ever satisfy the above property, as one can just let xj,k equal the top element of L for all indices j and k with all of the sets Kj being nonempty but having no choice function. Various different characterizations exist. For example, the following is an equivalent law that avoids the use of choice functions. For any set S of sets, we define the set S# to be the set of all subsets X of the complete lattice that have non-empty intersection with all members of S. We then can define complete distributivity via the statement The operator ( )# might be called the crosscut operator. This version of complete distributivity only implies the original notion when admitting the Axiom of Choice. In addition, it is known that the following statements are equivalent for any complete lattice L: L is completely distributive. L can be embedded into a direct product of chains [0,1] by an order embedding that preserves arbitrary meets and joins. Both L and its dual order Lop are continuous posets. Direct products of [0,1], i.e. sets of all functions from some set X to [0,1] ordered pointwise, are also called cubes. Every poset C can be completed in a completely distributive lattice. A completely distributive lattice L is called the free completely distributive lattice over a poset C if and only if there is an order embedding such that for every completely distributive lattice M and monotonic function , there is a unique complete homomorphism satisfying .
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.