Bond valuation is the determination of the fair price of a bond. As with any security or capital investment, the theoretical fair value of a bond is the present value of the stream of cash flows it is expected to generate. Hence, the value of a bond is obtained by discounting the bond's expected cash flows to the present using an appropriate discount rate.
In practice, this discount rate is often determined by reference to similar instruments, provided that such instruments exist. Various related yield-measures are then calculated for the given price. Where the market price of bond is less than its face value (par value), the bond is selling at a discount. Conversely, if the market price of bond is greater than its face value, the bond is selling at a premium. For this and other relationships between price and yield, see below.
If the bond includes embedded options, the valuation is more difficult and combines option pricing with discounting. Depending on the type of option, the option price as calculated is either added to or subtracted from the price of the "straight" portion. See further under Bond option. This total is then the value of the bond.
As above, the fair price of a "straight bond" (a bond with no embedded options; see ) is usually determined by discounting its expected cash flows at the appropriate discount rate. The formula commonly applied is discussed initially. Although this present value relationship reflects the theoretical approach to determining the value of a bond, in practice its price is (usually) determined with reference to other, more liquid instruments. The two main approaches here, Relative pricing and Arbitrage-free pricing, are discussed next. Finally, where it is important to recognise that future interest rates are uncertain and that the discount rate is not adequately represented by a single fixed number—for example when an option is written on the bond in question—stochastic calculus may be employed.
Below is the formula for calculating a bond's price, which uses the basic present value (PV) formula for a given discount rate.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course provides an overview of the theory of asset pricing and portfolio choice theory following historical developments in the field and putting
emphasis on theoretical models that help our unde
This course gives an introduction to the modeling of interest rates and credit risk. Such models are used for the valuation of interest rate securities with and without credit risk, the management and
The objective of this course is to provide a detailed coverage of the standard models for the valuation and hedging of derivatives products such as European options, American options, forward contract
This course gives you an easy introduction to interest rates and related contracts. These include the LIBOR, bonds, forward rate agreements, swaps, interest rate futures, caps, floors, and swaptions.
In finance, a lattice model is a technique applied to the valuation of derivatives, where a discrete time model is required. For equity options, a typical example would be pricing an American option, where a decision as to option exercise is required at "all" times (any time) before and including maturity. A continuous model, on the other hand, such as Black–Scholes, would only allow for the valuation of European options, where exercise is on the option's maturity date.
In finance, a bond option is an option to buy or sell a bond at a certain price on or before the option expiry date. These instruments are typically traded OTC. A European bond option is an option to buy or sell a bond at a certain date in future for a predetermined price. An American bond option is an option to buy or sell a bond on or before a certain date in future for a predetermined price. Generally, one buys a call option on the bond if one believes that interest rates will fall, causing an increase in bond prices.
Option-adjusted spread (OAS) is the yield spread which has to be added to a benchmark yield curve to discount a security's payments to match its market price, using a dynamic pricing model that accounts for embedded options. OAS is hence model-dependent. This concept can be applied to a mortgage-backed security (MBS), or another bond with embedded options, or any other interest rate derivative or option. More loosely, the OAS of a security can be interpreted as its "expected outperformance" versus the benchmarks, if the cash flows and the yield curve behave consistently with the valuation model.
In this thesis we present three closed form approximation methods for portfolio valuation and risk management.The first chapter is titled ``Kernel methods for portfolio valuation and risk management'', and is a joint work with Damir Filipovi'c (SFI and EP ...
We study the effects of takeover feasibility on asset prices and returns in a unified framework. We show theoretically that takeover protections increase equity risk, stock returns, and bond yields by removing a valuable put option to sell the firm, notabl ...
In this article, we account for the liquidity risk in the underlying assets when pricing European exchange options, which has not been considered in the literature. An Ornstein-Uhlenbeck process with the mean -reversion property is selected to model the ma ...