Summary
In physics and mathematics, in the area of vector calculus, Helmholtz's theorem, also known as the fundamental theorem of vector calculus, states that any sufficiently smooth, rapidly decaying vector field in three dimensions can be resolved into the sum of an irrotational (curl-free) vector field and a solenoidal (divergence-free) vector field; this is known as the Helmholtz decomposition or Helmholtz representation. It is named after Hermann von Helmholtz. For a vector field defined on a domain , a Helmholtz decomposition is a pair of vector fields and such that: Here, is a scalar potential, is its gradient, and is the divergence of the vector field . The irrotational vector field is called a gradient field and is called a solenoidal field or rotation field. This decomposition does not exist for all vector fields and is not unique. The Helmholtz decomposition in three dimensions was first described in 1849 by George Gabriel Stokes for a theory of diffraction. Hermann von Helmholtz published his paper on some hydrodynamic basic equations in 1858, which was part of his research on the Helmholtz's theorems describing the motion of fluid in the vicinity of vortex lines. Their derivation required the vector fields to decay sufficiently fast at infinity. Later, this condition could be relaxed, and the Helmholtz decomposition could be extended to higher dimensions. For riemannian manifolds, the Helmholtz-Hodge decomposition using differential geometry and tensor calculus was derived. The decomposition has become an important tool for many problems in theoretical physics, but has also found applications in animation, computer vision as well as robotics. Many physics textbooks restrict the Helmholtz decomposition to the three-dimensional space and limit its application to vector fields that decay sufficiently fast at infinity or to bump function that are defined on a bounded domain. Then, a vector potential can be defined, such that the rotation field is given by , using the Curl of a vector field.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.