In statistics, a categorical variable (also called qualitative variable) is a variable that can take on one of a limited, and usually fixed, number of possible values, assigning each individual or other unit of observation to a particular group or on the basis of some qualitative property. In computer science and some branches of mathematics, categorical variables are referred to as enumerations or enumerated types. Commonly (though not in this article), each of the possible values of a categorical variable is referred to as a level. The probability distribution associated with a random categorical variable is called a categorical distribution. Categorical data is the statistical data type consisting of categorical variables or of data that has been converted into that form, for example as grouped data. More specifically, categorical data may derive from observations made of qualitative data that are summarised as counts or cross tabulations, or from observations of quantitative data grouped within given intervals. Often, purely categorical data are summarised in the form of a contingency table. However, particularly when considering data analysis, it is common to use the term "categorical data" to apply to data sets that, while containing some categorical variables, may also contain non-categorical variables. A categorical variable that can take on exactly two values is termed a binary variable or a dichotomous variable; an important special case is the Bernoulli variable. Categorical variables with more than two possible values are called polytomous variables; categorical variables are often assumed to be polytomous unless otherwise specified. Discretization is treating continuous data as if it were categorical. Dichotomization is treating continuous data or polytomous variables as if they were binary variables. Regression analysis often treats category membership with one or more quantitative dummy variables. Examples of values that might be represented in a categorical variable: The roll of a six-sided die: possible outcomes are 1,2,3,4,5, or 6.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (32)
CS-411: Digital education
This course addresses the relationship between specific technological features and the learners' cognitive processes. It also covers the methods and results of empirical studies: do student actually l
FIN-403: Econometrics
The course covers basic econometric models and methods that are routinely applied to obtain inference results in economic and financial applications.
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Afficher plus
Séances de cours associées (85)
Test de la qualité de l'équipement : Variables et distributions
Couvre la révision des variables, l'analyse des données catégoriques et les tests de la bonté d'adaptation.
Statistiques exploratoires : Principes fondamentaux de l'analyse des données
Couvre les bases des statistiques exploratoires, y compris les variables, les quantiles, la tendance centrale, la dispersion, les valeurs aberrantes et la robustesse.
Thermodynamique et énergétique I
Déplacez-vous dans les bases de la thermodynamique, calculez les changements d'énergie, construisez des tables et utilisez les relations Maxwell pour les relations thermodynamiques.
Afficher plus
Publications associées (110)
Concepts associés (24)
Régression linéaire
En statistiques, en économétrie et en apprentissage automatique, un modèle de régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives. On parle aussi de modèle linéaire ou de modèle de régression linéaire. Parmi les modèles de régression linéaire, le plus simple est l'ajustement affine. Celui-ci consiste à rechercher la droite permettant d'expliquer le comportement d'une variable statistique y comme étant une fonction affine d'une autre variable statistique x.
Régression (statistiques)
En mathématiques, la régression recouvre plusieurs méthodes d’analyse statistique permettant d’approcher une variable à partir d’autres qui lui sont corrélées. Par extension, le terme est aussi utilisé pour certaines méthodes d’ajustement de courbe. En apprentissage automatique, on distingue les problèmes de régression des problèmes de classification. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.
Loi logistique
En probabilité et en statistiques, la loi logistique est une loi de probabilité absolument continue à support infini utilisé en régression logistique et pour les réseaux de neurones à propagation avant. Son nom de loi logistique est issu du fait que sa fonction de répartition est une fonction logistique. La loi logistique a deux paramètres μ et s > 0 et sa densité est Sa fonction de répartition est Son espérance et sa variance sont données par les formules suivantes : La loi logistique standard est la loi logistique de paramètres 0 et 1.
Afficher plus
MOOCs associés (6)
Systèmes d’Information Géographique 2
Ce cours constitue la seconde partie d'un enseignement consacré aux bases théoriques et pratiques des systèmes d’information géographique. Il propose une introduction aux systèmes d’information géogra
Systèmes d’Information Géographique 2
Ce cours constitue la seconde partie d'un enseignement consacré aux bases théoriques et pratiques des systèmes d’information géographique. Il propose une introduction aux systèmes d’information géogra
Geographical Information Systems 2
This course is the second part of a course dedicated to the theoretical and practical bases of Geographic Information Systems (GIS). It offers an introduction to GIS that does not require prior compu
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.