In particle physics, a glueball (also gluonium, gluon-ball) is a hypothetical composite particle. It consists solely of gluon particles, without valence quarks. Such a state is possible because gluons carry color charge and experience the strong interaction between themselves. Glueballs are extremely difficult to identify in particle accelerators, because they mix with ordinary meson states. In pure gauge theory, glueballs are the only states of the spectrum and some of them are stable. Theoretical calculations show that glueballs should exist at energy ranges accessible with current collider technology. However, due to the aforementioned difficulty (among others), they have so far not been observed and identified with certainty, although phenomenological calculations have suggested that an experimentally identified glueball candidate, denoted , has properties consistent with those expected of a Standard Model glueball. The prediction that glueballs exist is one of the most important predictions of the Standard Model of particle physics that has not yet been confirmed experimentally. Glueballs are the only particles predicted by the Standard Model with total angular momentum (J) (sometimes called "intrinsic spin") that could be either 2 or 3 in their ground states. Experimental evidence was announced in 2021, by the TOTEM collaboration at the LHC in collaboration with the DØ collaboration at the former Tevatron collider at Fermilab, of odderon (a composite gluonic particle with odd C-parity) exchange. This exchange, associated with a quarkless three-gluon vector glueball, was identified in the comparison of proton–proton and proton–antiproton scattering. In principle, it is theoretically possible for all properties of glueballs to be calculated exactly and derived directly from the equations and fundamental physical constants of quantum chromodynamics (QCD) without further experimental input. So, the predicted properties of these hypothetical particles can be described in exquisite detail using only Standard Model physics which have wide acceptance in the theoretical physics literature.
Jian Wang, Matthias Finger, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Rakesh Chawla, Matteo Galli, Anna Mascellani, João Miguel das Neves Duarte, Tagir Aushev, Lei Zhang, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Kun Shi, Wei Shi, Abhisek Datta, Jian Zhao, Federica Legger, Gabriele Grosso, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Muhammad Shoaib, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Muhammad Waqas, Hui Wang, Seungkyu Ha, Pratyush Das, Miao Hu, Anton Petrov, Xin Sun, Valérie Scheurer, Muhammad Ansar Iqbal, Lukas Layer
Jian Wang, Lesya Shchutska, Olivier Schneider, Yiming Li, Yi Zhang, Aurelio Bay, Guido Haefeli, Christoph Frei, Frédéric Blanc, Tatsuya Nakada, Michel De Cian, François Fleuret, Elena Graverini, Renato Quagliani, Federico Betti, Aravindhan Venkateswaran, Vitalii Lisovskyi, Sebastian Schulte, Veronica Sølund Kirsebom, Elisabeth Maria Niel, Ettore Zaffaroni, Mingkui Wang, Zhirui Xu, Chao Wang, Lei Zhang, Ho Ling Li, Mark Tobin, Minh Tâm Tran, Niko Neufeld, Matthew Needham, Maurizio Martinelli, Vladislav Balagura, Donal Patrick Hill, Liang Sun, Xiaoxue Han, Liupan An, Federico Leo Redi, Maxime Schubiger, Hang Yin, Violaine Bellée, Preema Rennee Pais, Pavol Stefko, Tara Nanut, Maria Elena Stramaglia, Yao Zhou, Tommaso Colombo, Vladimir Macko, Guillaume Max Pietrzyk, Evgenii Shmanin, Maxim Karpov, Simone Meloni, Xiaoqing Zhou, Surapat Ek-In, Carina Trippl, Sara Celani, Marco Guarise, Serhii Cholak, Dipanwita Dutta, Zheng Wang, Yong Yang, Yi Wang, Hao Liu, Hans Dijkstra, Gerhard Raven, Peter Clarke, Frédéric Teubert, Giovanni Carboni, Victor Coco, Shuai Liu, Adam Davis, Paolo Durante, Yu Zheng, Anton Petrov, Maxim Borisyak, Feng Jiang, Alexey Boldyrev, Almagul Kondybayeva, Hossein Afsharnia